DC900P series

Frame 1, 2, 3, 4

Issue 1 Product Manual

DC900P DC Digital Drive

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

 The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog.

Requirements

IMPORTANT

Please read this information BEFORE installing the equipment.

Intended Users

This manual is to be made available to all persons who are required to install, configure or service equipment described herein, or any other associated operation.

The information given is intended to highlight safety issues, and to enable the user to obtain maximum benefit from the equipment.

Complete the following table for future reference detailing how the unit is to be installed and used.

INSTALLATION DETAILS			
Model Number (see product label)		Where installed (for your own information)	
Unit used as a: (refer to "Certification")	o Component o Relevant Apparatus	Unit fitted:	☐ Enclosure

Application Area

The equipment described is intended for industrial (non-consumer) motor speed control utilising DC motors.

Personnel

Installation, operation and maintenance of the equipment should be carried out by qualified personnel. A qualified person is someone who is technically competent and familiar with all safety information and established safety practices; with the installation process, operation and maintenance of this equipment; and with all the hazards involved.

Product Warnings

CautionRisk of electric shock

CautionRefer to documentation

Earth/GroundProtective Conductor Terminal

Hazards

DANGER! - Ignoring the following may result in injury

- 1. This equipment can endanger life by exposure to rotating machinery and high voltages.
- 2. The equipment must be permanently earthed due to the high earth leakage current, and the drive motor must be connected to an appropriate safety earth.
- 3. Ensure all incoming supplies are isolated before working on the equipment. Be aware that there may be more than one supply connection to the drive.
- 4. There may still be dangerous voltages present at power terminals (motor output, supply input phases, DC bus and the brake, where fitted) when the motor is at standstill or is stopped.

- 5. For measurements use only a meter to IEC 61010 (CAT III or higher). Always begin using the highest range. CAT I and CAT II meters must not be used on this product.
- 6. Allow at least 10 minutes for the drive's capacitors to discharge to safe voltage levels (<50V). Use the specified meter capable of measuring up to 1000V dc & ac rms to confirm that less than 50V is present between all power terminals and between power terminals and earth.
- 7. Unless otherwise stated, this product must NOT be dismantled. In the event of a fault the drive must be returned. Refer to "Routine Maintenance and Repair".

WARNING! - Ignoring the following may result in injury or damage to equipment

SAFETY

Where there is conflict between EMC and Safety requirements, personnel safety shall always take precedence.

- Never perform high voltage resistance checks on the wiring without first disconnecting the drive from the circuit being tested.
- Whilst ensuring ventilation is sufficient, provide guarding and /or additional safety systems to prevent injury or damage to equipment.
- When replacing a drive in an application and before returning to use, it is essential that all user defined parameters for the product's operation are correctly installed.
- All control and signal terminals are SELV, i.e. protected by double insulation. Ensure all external wiring is rated for the highest system voltage.
- Thermal sensors contained within the motor must have at least basic insulation.
- All exposed metalwork in the Drive is protected by basic insulation and bonded to a safety earth.
- RCDs are not recommended for use with this product but, where their use is mandatory, only Type B RCDs should be used.

EMC

- In a domestic environment this product may cause radio interference in which case supplementary mitigation measures may be required.
- This equipment contains electrostatic discharge (ESD) sensitive parts. Observe static control precautions when handling, installing and servicing this product.
- This is a product of the restricted sales distribution class according to IEC 61800-3.
- It is designated as "professional equipment" as defined in EN61000-3-2. Permission of the supply authority shall be obtained before connection to the low voltage supply.

CAUTION!

APPLICATION RISK

- The specifications, processes and circuitry described herein are for guidance only and may need to be adapted to the user's specific application. We can not guarantee the suitability of the equipment described in this Manual for individual applications.
- It is advised that motors with significantly lower voltage ratings than the supply voltage are **NOT** used with the drive.

RISK ASSESSMENT

Under fault conditions, power loss or unintended operating conditions, the drive may not operate as intended. In particular:

- Stored energy might not discharge to safe levels as quickly as suggested, and can still be present even though the drive appears to be switched off
- The motor's direction of rotation might not be controlled
- The motor speed might not be controlled
- The motor might be energised

A drive is a component within a drive system that may influence its operation or effects under a fault condition. Consideration must be given to:

• Stored energy

- Supply disconnects
- Sequencing logic

• Unintended operation

Contents

DC900P DC DIGITAL DRIVE		Power Connections	3-12
		Control Connections	3-17
CHAPTER 1 GETTING STARTED	4.4	Motor Field Options	3-25
About this Manual		Internal/External Supply (Frames 2, 3, 4)	3-25
How the Manual is Organised	1-1	DC Contactor - External Va Sensing	3-29
Initial Steps	1-1	Power Board - PCB Reference 0030101008 (Frame 3)	3-29
Equipment Inspection and Storage		Power Board – PCB Reference 030101005 (Frames 4)	3-30
Packaging and Lifting Details	1-2	Power Board Circuit Descriptions	3-31
CHAPTER 2 PRODUCT OVERVIEW		0030101013 (Frame 1)	3-31
Product Range	2-1	0030101011 (Frame 2)	3-33
900P Controller (Frames 1 & 2)	2-3	0030101008 (Frame 3)	3-35
900P Controller (Frame 3)	2-4	030101005 (Frames 4)	3-40
900P Controller (Frames 4)	2-5	Optional Equipment	
900P Door Assembly (Frames 3, 4)	2-6	Remote Mounting the Keypad	3-44
How it Works	2-7	Speed Feedback and Technology Options	3-45
Control Features	2-8	Earth Fault Monitoring Systems	3-46
Keypads	2-9	Installation Drawings	
Option Boards	2-9	Drive Installation Drawings	3-47
CHAPTER 3 INSTALLING THE DRIVE		CHAPTER 4 OPERATING THE DRIVE	
Mechanical Installation		Pre-Operation Checks	4-1
Unpacking the Drive	3-1	Control Philosophy	
Lifting the Drive	3-1	Start/Stop and Speed Control	
Mounting the Drive	3-4	Selecting Local or Remote Control	4-3
Ventilation and Cooling Requirements	3-5	Setting-up the Drive	4-5
AC Line Choke	3-5	Calibrating the Control Board	4-5
Filtering	3-6	Selecting Speed Feedback	4-7
Electrical Installation	3-7	Speed Feedback Option Boards	4-7
Minimum Connection Requirements	3-9	Initial Start-Up Routine	
Connection Diagrams	3-11	s. 215 3p / 1000	

Performance Adjustment	4-15	CACT Support	A-2
Current Loop - The ARMATURE Autotune Feature	4-15	System Port (P3) Set-up	5-7
Speed Loop Adjustment	4-16	APPENDIX B PARAMETER SPECIFICATION TABLES	
Starting and Stopping Methods	4-18	Specification Table: Tag Number Order	B-2
Stopping Methods	4-18		
Normal Stop (C3)	4-18	APPENDIX C PROGRAMMING Drogramming Your Application	C 1
Program Stop (B8)	4-21	Programming Your Application	C-1
Coast Stop (B9)	4-24	Programming with Block Diagrams	C-1
Standstill	4-24	Modifying a Block Diagram	C-1 C-4
The Trip Condition	4-24	Saving Your Modifications	
Normal Starting Method	4-24	Understanding the Function Block Description	C-4
Advanced Starting Methods	4-25	MMI Menu Maps	C-5
Starting Several Drives Simultaneously	4-25	Function Blocks By Category	C-6
Jog	4-25	Function Block Descriptions	C-7
Crawl	4-25	ADVANCED	C-7
Take Up Slack	4-26	ALARM HISTORY	C-11
External Control of the Drive		ALARMS	C-12
Remote Sequencing Command	4-27	ANALOG INPUTS	C-16
Sequence Status	4-29	ANALOG OUTPUTS	C-18
•		AUTOTUNE	C-19
CHAPTER 5 CONTROL LOOPS Control Loops Dringing of Operation	E 1	AUX I/O	C-22
Control Loops - Principle of Operation	5-1 5-1	CALIBRATION	C-23
Current Loop		COMMS PORT	C-26
Speed Loop	5-4	CONFIGURE DRIVE	C-28
Field Control	5-5	CURRENT LOOP	C-29
Set-Up Notes	5-5	CURRENT PROFILE	C-40
Field Weakening	5-6	DEADBAND	C-41
Standby Field	5-7	DEMULTIPLEXER	C-42
APPENDIX A SERIAL COMMUNICATIONS		DIAMETER CALC	C-43
System Port (P3)			C-51
UDP Support	A-2	DIGITAL OUTPUTS	C-54
System Port (P3) Set-up	A-2	DRIVE INFO	C-57
JDP Transfer Procedure	A-2	ENCODER	C-59
MMI Dump Procedure	Δ-3	FEEDBACKS	C-62

FIELD CONTROL	C-63
INERTIA COMP	C-71
LINK	C-72
INVERSE TIME	C-73
JOG/SLACK	C-74
LOGIC FUNC	C-77
MENUS	C-83
MIN SPEED	C-84
miniLINK	C-85
MULTIPLEXER	C-86
OPSTATION	C-87
PID	C-89
PLL (PHASE LOCKED LOOP)	C-94
PNO CONFIG	C-95
PRESET SPEEDS	C-96
PROFILED GAIN	C-99
RAISE/LOWER	C-101
RAMPS	C-104
SELECT	C-110
SEQUENCING	C-111
SETPOINTSUM	C-114
SPEED LOOP	C-117
SRAMP	C-124
STANDSTILL	C-127
STOP RATES	C-130
TEC OPTION	C-133
TORQUE CALC.	C-135
VALUE FUNC	C-136

Chapter 1 Getting Started

A few things you should do when you first receive the unit.

About this Manual	1-1	Equipment Inspection and Storage1-
 How the Manual is Organised 	1-1	Packaging and Lifting Details1-
 Initial Steps 	1-1	

About this Manual

This manual is intended for use by the installer, user and programmer of the DC900P Series DC Digital Drive. It assumes a reasonable level of understanding in these three disciplines.

NOTE Please read all Safety Information before proceeding with the installation and operation of this unit.

Enter the "Model No" from the rating label into the "Installation Details" table at the front of this manual. It is important that you pass this manual on to any new user of this unit.

This manual is for the following models from the DC900P Series DC Digital Drive:

- Three phase, regenerative, four quadrant armature controllers: 900P
- Three phase non-regenerative, two quadrant armature controllers: 901P
- 900P Door

How the Manual is Organised

This Engineering Reference manual is organised into chapters and appendices, indicated by the numbering on the edge of each page.

The manual is more detailed than the QuickStart manual, and so is of use to the unfamiliar as well as the high-end user.

Application Block Diagram

You will find this at the rear of Appendix D: "Programming" . These will become your programming tool as you become more familiar with the software.

Initial Steps

Use the manual to help you plan the following:

Installation

Know your requirements:

- certification requirements, CE/UL/c-UL conformance
- conformance with local installation requirements
- supply and cabling requirements

1-2 Getting Started

Operation

Know your operator:

- how is it to be operated, local and/or remote?
- what level of user is going to operate the unit?
- decide on the best menu level for the Keypad (where supplied)

Programming (Keypad or suitable PC programming toolonly)

Know your application:

- plan your "block diagram programming"
- enter a password to guard against illicit or accidental changes
- learn how to back-up your application data
- customise the Keypad to the application

Equipment Inspection and Storage

- Check for signs of transit damage
- Check the product code on the rating label conforms to your requirement.

If the unit is not being installed immediately, store the unit in a well-ventilated place away from high temperatures, humidity, dust, or metal particles.

Refer to Chapter 2: "Product Overview" to check the rating label/product code.

Refer to Chapter 8: "Routine Maintenance and Repair" for information on returning damaged goods.

Refer to Appendix E: "Technical Specifications" - Environmental Details for the storage temperature.

Packaging and Lifting Details

WARNING

The packaging is combustible. Igniting it may lead to the generation of lethal toxic fumes.

- Save the packaging in case of return. Improper packaging can result in transit damage.
- Use a safe and suitable lifting procedure when moving the unit. Never lift the unit by its terminal connections.

Prepare a clear, flat surface to receive the drive before attempting to move it. Do not damage any terminal connections when putting the unit down.

Chapter 2 Product Overview

An introduction to the 900P range of products, and a quick look at the Keypads and available plug-in Options.

Product Range2-1	Keypads
How it Works2-7	 Option Boards
Control Features2-8	

- Keypads.....2-9
- Option Boards.....2-

Product Range

The DC900P Series DC Digital Drive is designed for use in a suitable enclosure, with associated control equipment. The unit accepts a variety of standard three-phase ac supply voltages depending upon the model, and is suitable for the powering of DC shunt field and permanent magnet motors, providing controlled dc output voltage and current for armature and field.

All units are designed for simple and economical panel mounting using keyhole slots. Plug-in control connectors simplify the fitting and removal of the unit to the panel.

Where possible, standard parts are used throughout the range thereby reducing the variety of spare parts required to maintain a multi-drive system. For example, the same basic control boards are used in all types of three-phase armature controller regardless of horsepower or bridge configuration.

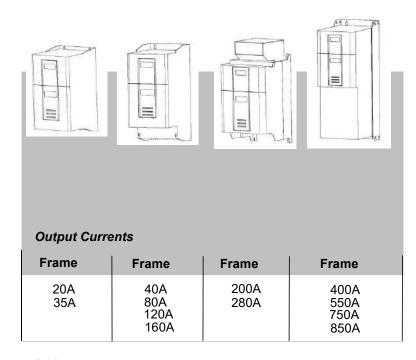
The control circuit is totally isolated from the power circuit thus simplifying the interconnection of controllers within a system and improving operator safety. The coding circuitry adjusts automatically to accept supply frequencies between 45-65Hz and possesses high immunity to supply-borne interference. The armature controllers are phase rotation insensitive.

Control and Communications

The drive is controlled by a 32 bit Microcontroller providing advanced features such as:

- Complex control algorithms which are not achievable by simple analog techniques.
- Software-configurable control circuitry built around standard software blocks.
- Serial link communications with other drives or a PC for advanced process systems.

The Keypad gives access to parameters, diagnostic messages, trip settings and full application programming.

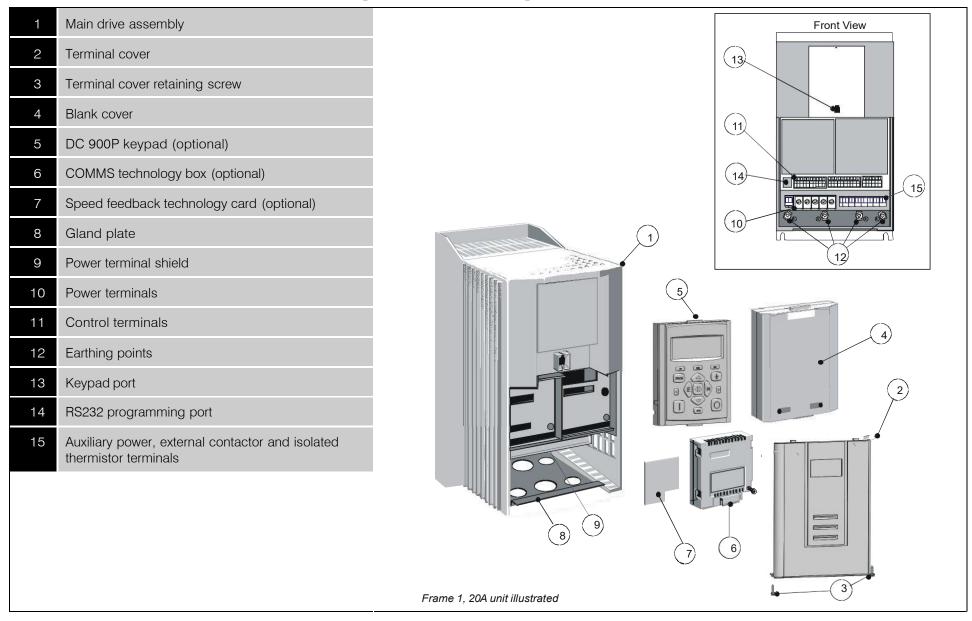

Regenerative and Non-Regenerative Models

The motor armature controllers include both regenerative and non-regenerative models:

- Regenerative controllers consist of two fully-controlled thyristor bridges and a field bridge with full transient and overload protection, together with sophisticated electronic control of acceleration and deceleration, speed and torque in both directions of rotation.
- Non-regenerative controllers consist of one fully-controlled thyristor bridge and a field bridge with full transient and overload protection, together with its associated electronic control circuitry, and provide accurate speed and/or torque control in one selected direction of rotation.

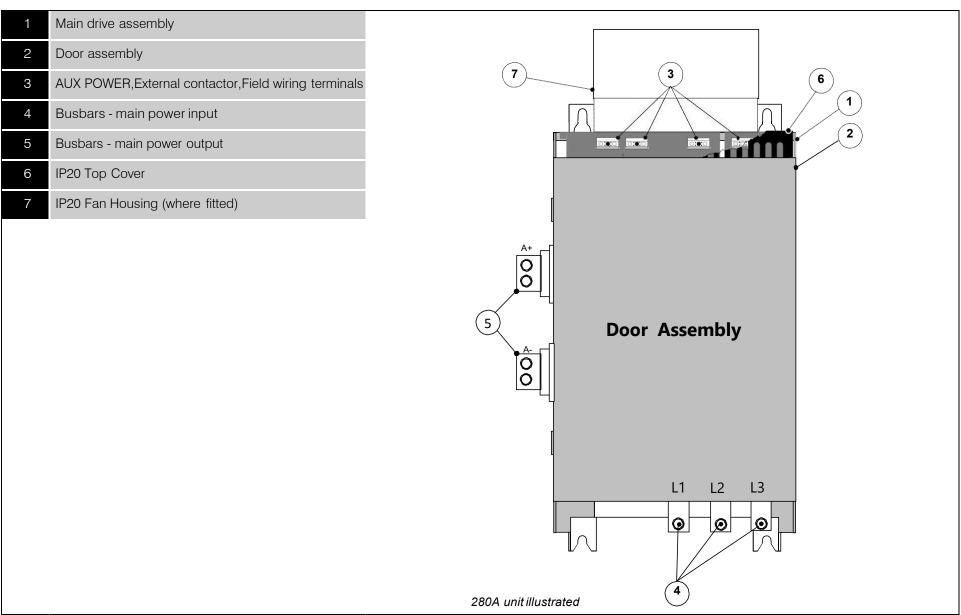
Field Regulator

A field regulator is fitted as standard. The regulator consists of a full-wave half controlled single phase thyristor bridge with transient and overload protection. It provides either a fixed voltage or fixed current source, depending upon the selected mode of operation for constant torque applications. The field current mode of operation can be further enhanced to provide field weakening for drive control motors which require extended speed or constant horsepower control.

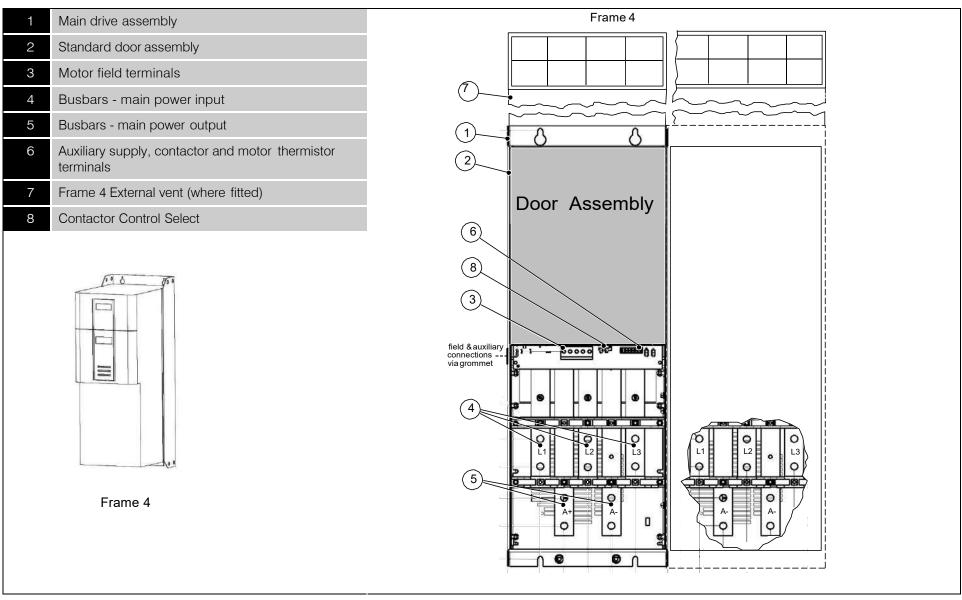


All units are available as

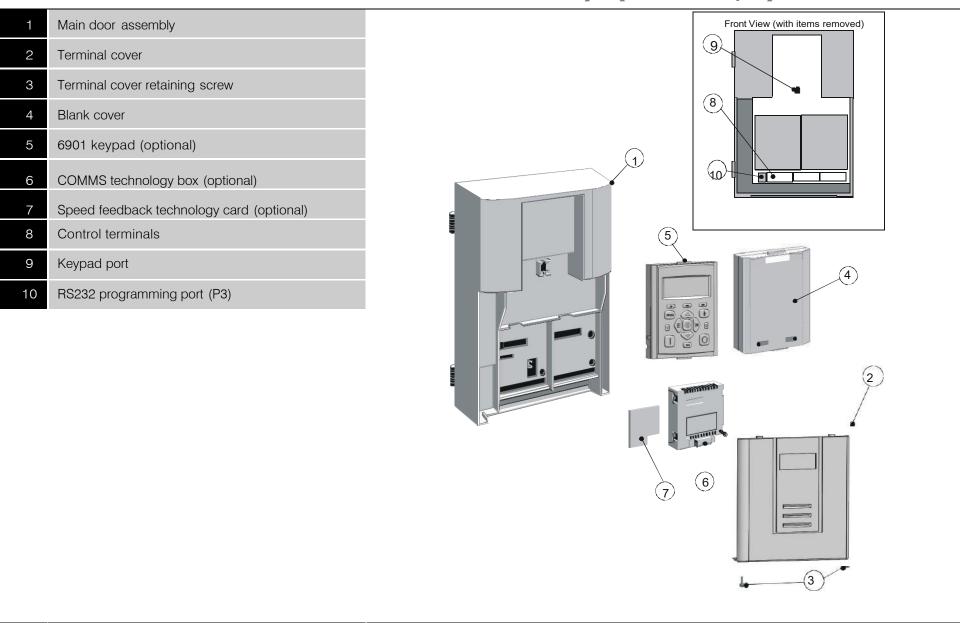
900P: 4Q 3-phase, fully controlled, anti-parallel thyristor bridge configuration


901P: 2Q 3-phase, fully controlled thyristor bridge configuration

900P Controller (Frames 1 & 2)



2-4 Product Overview

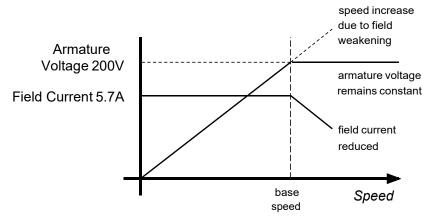

900P Controller (Frame 3)

900P Controller (Frames 4)

900P Door Assembly (Frames 3, 4)

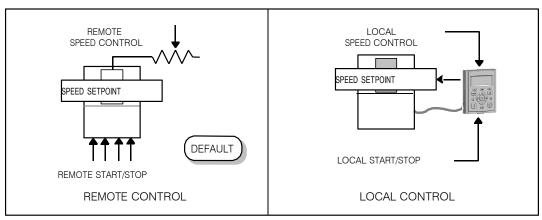
How it Works

NOTE Refer to Chapter 5: "Control Loops" for a more detailed explanation.


In *very* simple terms, the drive controls the dc motor with the use of *Control Loops* - an inner Current Loop and an outer Speed Loop. These control loops can be seen in the Application Block Diagram. The block diagram shows all the drive's software connections.

Using the Keypad, you can select the control loops to be used by the drive to provide either:

- Current Control
- Speed Control (default)


It is usual to supply a Current or Speed Feedback signal to the appropriate loop for more effective control of the drive. Current Feedback sensors are built-in, whereas Speed Feedback is provided

directly from the armature sensing circuit (default), or by tachogenerator, encoder connection to the relevant option board.

When in Speed Control, you can modify the performance of the drive further by controlling the motor field, i.e. Field Control. By weakening the field current, you can obtain an increase in motor speed beyond that normally achievable for the rated Armature Voltage of the dc motor.

The drive is controlled remotely using digital/analog inputs and outputs, or locally using the Keypad. By plugging in a COMMS Option Technology Box, the drive can be linked into a network and controlled by a PLC/SCADA or other intelligent device.

Control Features

Control	Control Circuits	Fully isolated from power circuit(SELV)			
	Output Control	Fully controlled 3-phase thyristor bridge			
		Microprocessor implemented phase control extend	ded firing range		
		• For use on 50 or 60Hz supplies with a frequency of	compliance range of 45 to 65Hz		
		Phase control circuits are phase rotation insensitiv	re		
	Control Action	Fully digital			
		Advanced PI with fully adaptive current loops for	Advanced PI with fully adaptive current loops for optimum dynamic performance		
		Self Tuning Current Loop utilising "Autotune" alg	gorithm		
		Adjustable speed PI with integral defeat			
	Speed Control	By Armature Voltage feedback with IR compensa	ition		
		By Encoder feedback or analog tachogenerator			
	Speed Range	100 to 1 typical with tachogenerator feedback			
	Steady State Accuracy	• 0.01 % Encoder Feedback with Digital setpoint (s	erial link or P3)		
		• 0.1 % Analog Tach Feedback			
		• 2 % Voltage Feedback			
		Absolute (0.0% error) using QUADRALOC Mk I	•		
		NOTE Long term analog accuracy is subject to to	achogenerator temperature stability.		
	Adjustments	All adjustments in software can be altered by			
		the Keypad or via serial communications. The Keypad in addition to diagnostic facilities.	d provides monitoring and adjustment of parameters and levels,		
Protection		High energy MOVs	Thyristor Stack overtemperature		
		Overcurrent (instantaneous)	 Thyristor "Trigger" failure 		
		Overcurrent (inverse time)	 Thyristor Snubber Network 		
		Field failure	 Zero-speed detection 		
		Speed feedback failure Standstill logic			
		Motor overtemperature	Stall protection		
Diagnostics		Fully computerised with first fault latch and auton	natic display		
Digital LCD monitoring		Digital LCD monitoring			
		Full diagnostic information available on RS422/RS485			
		LED circuit state indication			

Table 2-1 Control Features

Keypads

The drive is fitted with the Keypad.

It provides Local control of the drive, monitoring and complete access for application programming.

For example, you can start and stop the motor, check on diagnostic information, and change parameters values on the drive.

The keypad fits to the front of the drive, however, you can also remote-mount the keypad up to 3 metres away.

For remote-mounting, you'll need the correct Remote Mounting Kit. Refer to Chapter 6: "The Keypad".

Keypad

Option Boards

A range of Option Boards are available for the DC900P drive. The boards provide for Speed Feedback and Communications.

Refer to Chapter 3: "Installing the Drive" - Speed Feedback and Technology Options.

Chapter 3 Installing the Drive

This chapter describes the installation of the DC900P drive and associated equipment.

Mecha	nical Installation	3-1
•	Unpacking the Drive	3-1
•	Lifting the Drive	3-1
•	Mounting the Drive	3-4
•	Ventilation and Cooling Requirements	3-5
•	AC Line Choke	3-5
•	Filtering	3-6
Electric	cal Installation	3-7
•	Minimum Connection Requirements	3-9
•	Motor Field Options	3-25
•	DC Contactor - External Va Sensing	3-29
•	Power Board Circuit Descriptions	3-31

Optional Equipment	3-43
Remote Mounting the Keypad	3-44
Installation Drawings	3-47
 Drive Installation Drawings 	3-47

Mechanical Installation

IMPORTANT

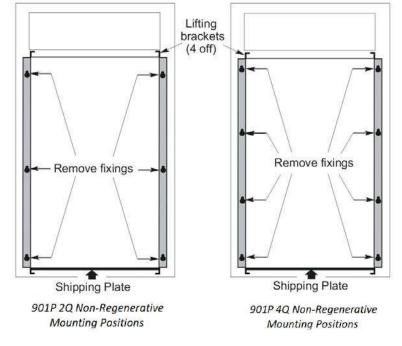
Read Appendix B: "Certification" before installing this unit. Refer to "Installation Drawings", page 3-75 for further information. Note the additional information for Frame 6 and Frame H at the end of this Chapter.

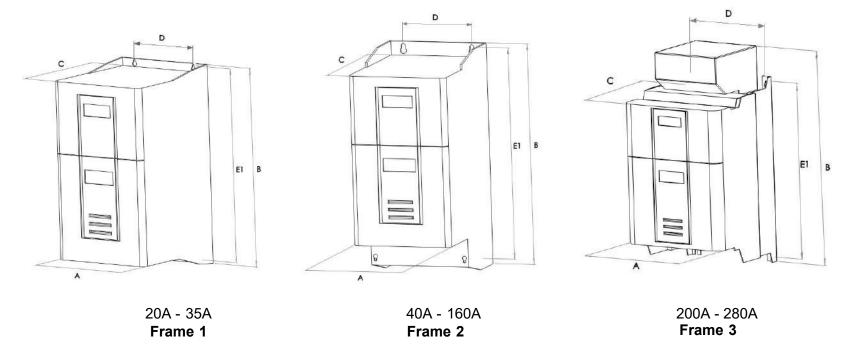
Unpacking the Drive

Caution

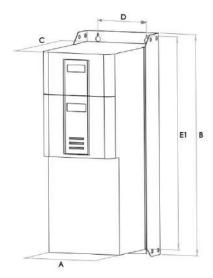
The packaging is combustible and this action may produce lethal toxic fumes.

Save the packaging in case of return. Improper packaging can result in transit damage.




Figure 3-1 Lifting Details

Lifting the Drive


Use a safe and suitable lifting procedure when moving the drive. Never lift the drive by its terminal connections. Prepare a clear, flat surface to receive the drive before attempting to move it. Do not damage any terminal connections when putting the drive down.

Frame 4 drives have lifting eyes and a shipping plate fitted to the base to enable the drive to be lifted into position, or to be set-on-end by a forklift. Remove the shipping plate before wiring the power terminals.

3-2 Installing the Drive

Current Rating (A)	Weight in Kg (lbs)	Overall Dimensions Fixing Centres			Centres	
		А	В	С	D	E1
20 - 35	6.4	196 (7.72)	372.2(14.65)	211 (8.3)	140 (5.52)	363 (14.29)
40 - 160	11.3	196 (7.72)	430 (16.93)	255 (10.04)	140 (5.52)	412 (16.22)
200	18	250(9.8)	485(19.7)	180 (8.3)	200 (7.9)	400 (15.7)
280	20	300(11.8)	485(19.7)	180 (8.3)	200 (7.9)	400 (15.7)
Dimensions are in millimetres (inches) Refer to "Installation Drawings", page 3-75.						

380A - 850A
Frame 4
(vent kit assemblies not shown)

Current Rating Weight		Overall Dimensions			Fixing Centres	
(A)	Kg (lbs)	А	В	С	D	E1
400	42	253 (10.0)	700 (27.6)	358 (14.2)	150 (5.9)	680 (26.8)
550	42	253 (10.0)	700 (27.6)	358 (14.2)	150 (5.9)	680 (26.8)
750	48	253 (10.0)	700 (27.6)	358 (14.2)	150 (5.9)	680 (26.8)
850	48	253 (10.0)	700 (27.6)	358 (14.2)	150 (5.9)	680 (26.8)

*900P drive weighs 270Kg (595.4 lbs) without packaging and fan assembly 901P drive weighs 160kg (352.8 lbs) without packaging and fan assembly Fan weighs 18.5Kg (40.8 lbs) Dimensions are in millimetres (inches)

Mounting the Drive

NOTE

General installation details are given below for mounting the Drive, however, if you are installing the unit with an EMC filter refer to "External AC Supply EMC Filter Installation, page 3-60.

Mount the unit vertically on a solid, flat, vertical surface. It is mounted using bolts or screws into four fixing points (keyhole slots). The design allows the use of 100mm grid fixing.

It must be mounted inside a suitable cubicle. To comply with the European safety standards VDE 0160 (1994)/EN50178 (1998), the cubicle must require a tool for opening.

NOTE

Holes for the mounting bolts or screws must be placed accurately.

Cover any units all ready mounted to the panel to protect them from stray metal filings while drilling mounting holes.

General Mounting Hints

Caution

Use proper lifting techniques when lifting and moving.

Drill the mounting holes into the backplate. The holes must be positioned accurately. Fit the nut inserts. Fit bolts and washers into the top inserts so that the drive can be hung using the keyhole slots.

Hang the drive on the bolts, between the panel and washers you have just fitted. Fit bolts and washers to the lower nut inserts. Finally, use the socket wrench to tighten all nuts securely.

Check the drive and its housing for packing material, mounting debris, or any other material that could damage and/or restrict the operation of the equipment.

Recommended Tools

Socket wrench	With a 6 Inch extension		
Deep sockets	M6, M10, M13, M17, 7/16", 1/2"		
Screwdrivers	Phillips No.2, flat blade - 0.5 x 3.0mm, 0.8 x 4.0mm		
Wire cutters	Small		

Ventilation and Cooling Requirements

NOTE

When fitting a drive into a sealed enclosure additional cooling MUST be provided, otherwise the internal air will overheat causing the drive to trip on "overtemperature".

Refer to Appendix E: "Technical Specifications" - Cooling Fans.

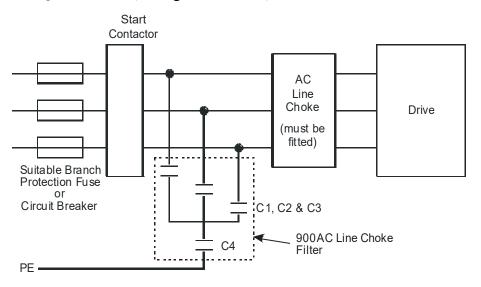
The Drive gives off heat during normal operation and must therefore be mounted to allow the free flow of air through the air entries and exits. Maintain the minimum air clearances given on the drawings to ensure that heat generated by other adjacent equipment is not transmitted to the Drive. Be aware that other equipment may have its own clearance requirements. When mounting two or more DC900P's together, these clearances are cumulative.

Ensure that the mounting surface is normally cool.

AC Line Choke

We recommend that you always use the specified ac line choke with the Drive

to provide a known supply impedance for effective operation of the thyristor transient suppression circuits. At least 1% line impedance should be provided in the supply side of the drive.


Refer to Appendix E: "Technical Specifications" - AC Line Choke for selection details.

Filtering

NOTE Refer to Appendix B: "Certification" - EMC.

For compliance in Europe with EN61800-3 Table 11:

- The CE marking of drives whose armature current >100A is applicable without filtering.
- The CE marking of drives whose armature current <100A is **only** applicable with filtering. The drive requires one of the following:
 - 1. The specified filter given in Appendix B (also refer to E xternal AC Supply EMC Filter Installation, page 3-60)
 - 2. Compliant filtering offered by the System
 - 3. Capacitors fitted between phase and earth (see Figure 3-4 below)

Capacitor Reference Number	Capacitor Value/Type		
C1, C2, C3	3.0μF 400V, EMI suppressor type Class X1		
C4	1.0μF 400V, EMI suppressor type Class X1		

Figure 3-4 AC Line Choke and Capacitors fitted to Frame 1 (20A & 35A) & Frame 2 (40A & 80A) Drives

Electrical Installation

IMPORTANT

Please read the Safety Information on page Cont. 3 & 4 before proceeding.

WARNING

Ensure that all wiring is electrically isolated and cannot be made "live" unintentionally by other personnel.

NOTE

Refer to Appendix E: "Technical Specifications" for additional Wiring Requirements for EMC Compliance and Wire Sizes and Termination Tightening Torques.

Cables are considered to be electrically *sensitive*, *clean* or *noisy*. You should already have planned your cable routes with respect to segregating these cables for EMC compliance.

If not, refer to Appendix B: "Certification".

If the controller is to be operating in a regenerating mode for extended periods acting as a load generator for another machine, it is advisable to fit additional protection in the armature circuit. A dc fuse or high speed circuit breaker will provide this protection. If in doubt, contact DC900P Drives.

If fitted, the AC filter MUST be placed between the supply and the

choke.

Failure to do so will result in unreliable operation of the drive and reduced lifetime of the filter.

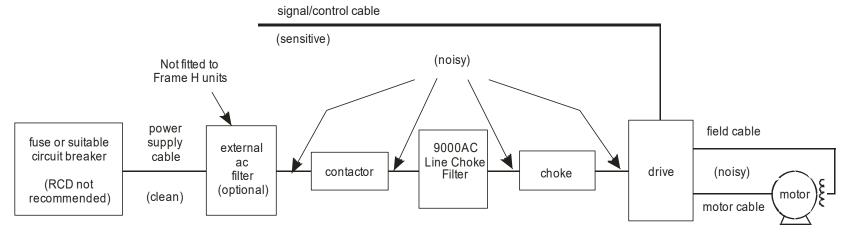


Figure 3-5 Cabling Requirements

Cable Gland Requirements

Use a metal gland to connect to the cubicle backplate, near the VSD (variable speed drive). It must be capable of securing a 360 degree screened connection to give EMC compliance. A 360 degree screened connection can be achieved as shown.

We suggest a rubber grommet is fitted on holes where a cable gland is not used.

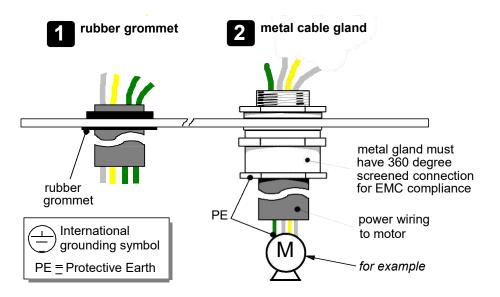


Figure 3-6 Cable and Screen Fixings

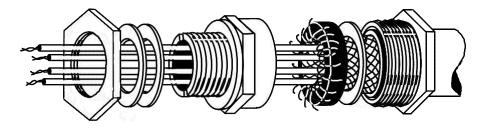


Figure 3-7 360 Degree Screened Connection

Minimum Connection Requirements

IMPORTANT

If in doubt about the connection of the DC motor to the drive, contact DC900P Drives.

NOTE

Because of the complexity of showing all possible configurations, this Chapter deals only with a 'general purpose' operation as a basic speed controller. Special wiring options usually form part of a customer-specific system and connection details will be provided separately.

Minimum connections to operate the drive safely are shown using bold lines in the following circuit diagrams. These connections are highlighted in text with the symbol opposite. The remaining connections are not necessary for a "quick start-up".

The Drive is using the default Armature Voltage feedback when following the 'minimum connection' instructions.

WARNING

Power terminals carry an electrical voltage which can be lethal. Never work on any control equipment or motors without first removing all power supplies from the equipment.

Caution

Make sure all wiring connections meet or exceed applicable local and National Electrical Codes. Be sure to fit branch circuit and motor overload protection.

IMPORTANT

If fitting your own "Power On" indicator lamp, annunciator, etc., this should be switched by an auxiliary contactor of the main contactor, not by the controller auxiliary relay.

To avoid damaging the drive NEVER carry out high voltage resistance or dielectric strength tests without first completely disconnecting the drive from the circuit being tested.

Power Cables

NOTE Refer to Appendix E: "Technical Specifications" - Wire Sizes and Termination Tightening Torques.

- minimum rating of 1.1 x full load current (Europe)
- minimum rating of 1.25 x full load current (UL)

Control Wiring

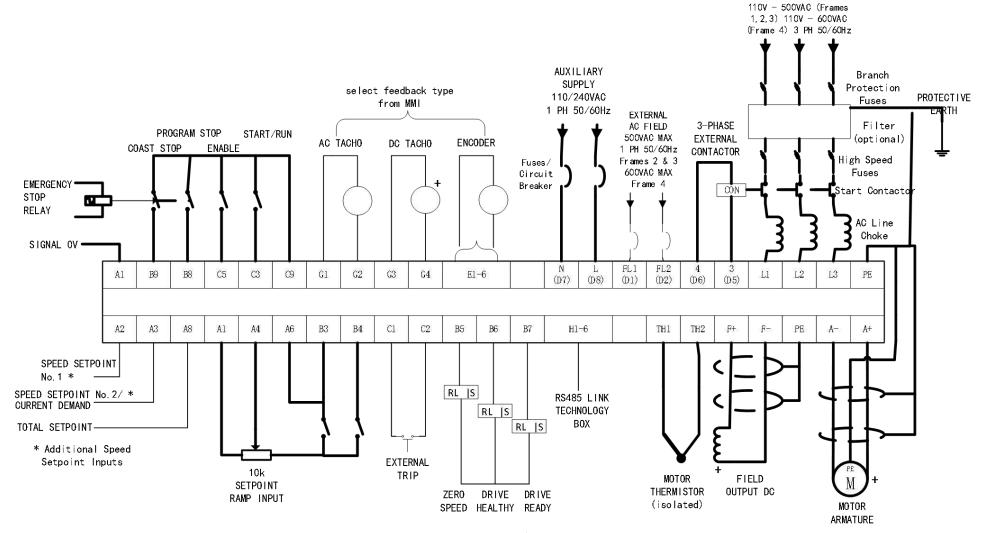
NOTE Refer to Appendix E: "Technical Specifications" for Control Terminal information.

- Control wiring must have a minimum cross-section area of 0.75mm²(18AWG).
- Use screened control cables to comply with EMC requirements.
- Feed the control cables into the drive and connect to the control terminals. Refer to the connection label on the inside of the terminal cover. Close the terminal cover.

IMPORTANT All connections made to terminal blocks A, B and C must be isolated signal voltages.

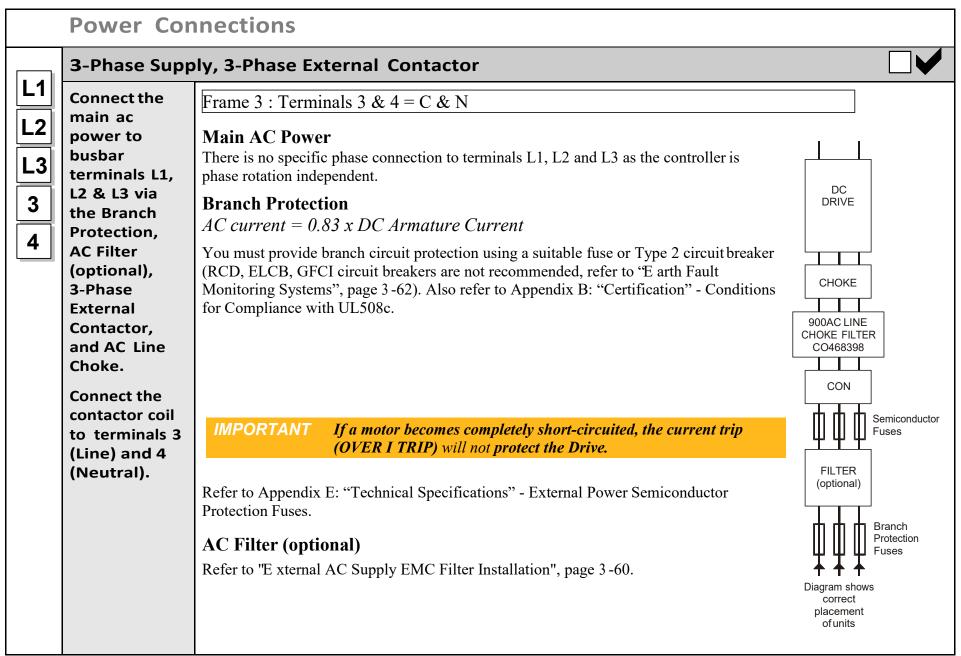
Important Connections

The following connections must be made for the drive torun:


- Terminals TH1 and TH2 must be linked if a motor thermostat is not fitted.
- Terminals C1 and C2 must be linked if an External Trip interlock is not required.

Connection Diagrams

FRAMES 1, 2, 3 & 4


Bold lines indicate
"minimum connections"

3-PHASE SUPPLY

Links required if Thermistor and/or External Trip switch not fitted

Figure 3-8 Power Connections: Frames 1, 2, 3 & 4 (general purpose configuration)

Power Connections continued

3-Phase Supply, 3-Phase External Contactor continued

3-Phase External Contactor

The contactor does not switch current and is primarily for disconnection and sequencing of the power bridge. It must be energised directly from the controller by a coil with a rating suitable (AC1) for the controller concerned. No additional series contacts or switches are permitted since they will interfere with the sequencing of the controller and cause unreliability and possible failure.

Connect to main contactor terminals Con L and Con N only as described in Appendix E, otherwise unreliable or dangerous operation may occur - do not connect to a PLC input or sensitive relay.

Slave Relay: If the 3-phase contactor has a coil with an inrush greater than 3A, a slave relay **MUST** be used to drive the contactor coil. The contactor and slave relay (if required) **MUST** have coil voltages compatible with the controller auxiliary supply voltage.

DO NOT use a slave relay with a coil current less than 25mA as it may be energised by the contact suppression network.

Frames 4: A relay jumper (CONN1) is provided on the power board enabling terminals 3 & 4 to be powered (auxiliary supply - default position), or to be volt-free (for customers own contactor supply).

DC Contactor: A DC contactor can be used but the sequencing must be adjusted to accommodate its use: an auxilliary normally open volt-free contact of the contactor must be connected in series with the "ENABLE" input (C5) to disable the drive until after the contactor is closed.

AC Line Choke

IMPORTANT Always fit the recommended choke. Refer to Appendix E: "Technical Specifications" - AC Line Choke.

We can provide suitable chokes, designed to connect directly to the drive terminals. Refer to Appendix E: "Technical Specifications" - AC Line Choke.

Power Connections continued

Protective Earth Connections

Connect the drive's PE terminal to an independent earth/ground star point.

Connect this earth/ground star point to Protective Earth.

IMPORTANT

The drive and filter (if fitted) must be permanently earthed. Each conductor used for permanent earthing must individually meet the requirements for a protective earth conductor.

For installations to EN 60204 in Europe:

- For permanent earthing, the drive requires either two individual incoming protective earth conductors (<10mm² cross-section), or one conductor (≥10mm² cross-section) connected to an independent protective earth/ground point near the drive.
- Run the motor protective earth/ground connection in parallel with the motor supply conductors, ideally in the same conduit/screen/armour, and connect to an independent protective earth/ground point near the drive.

Refer to Appendix B: "Certification" - EMC General Installation Considerations.

Caution

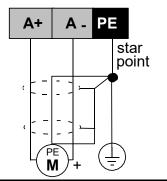
On the Frame 5, both the Master and Slave drives must be individually earthed.

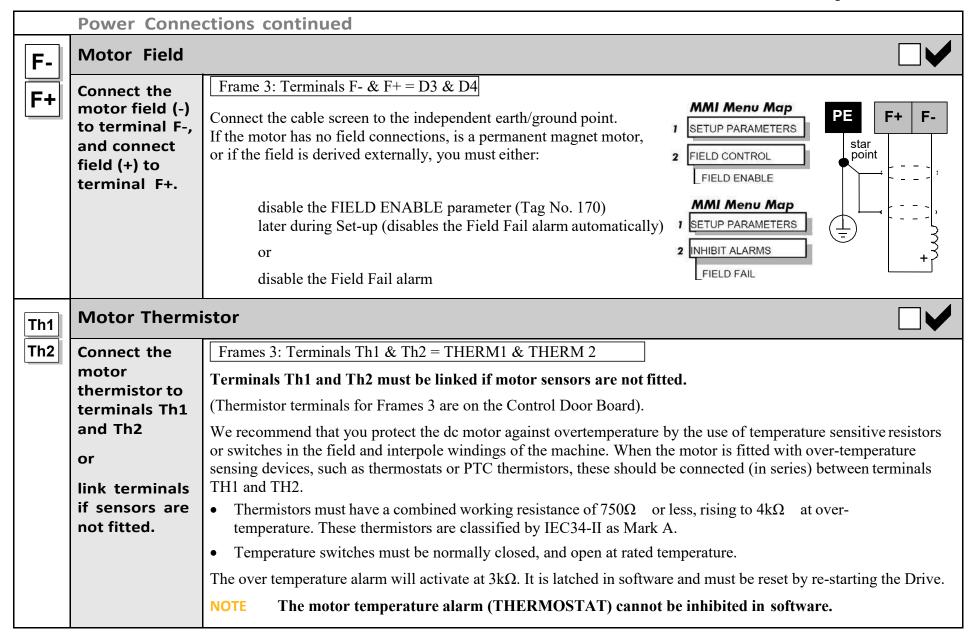
A+

Motor Armature

A-||;

Connect the


motor
armature to
terminals A+


Connect the cable screen to the motor's PE terminal and the earth/ground star point. Connect the motor's PE terminal to the earth/ground star point.

For cable information refer to Appendix B: "Certification" - Recommended Wire Sizes.

NOTE

If the drive is to operate in regenerating mode for long periods, it is advisable to fit a dc fuse or high speed circuit breaker in the armature circuit. If in doubt consult DC900P Drives.

3-16 Installing the Drive

Power Connections continued		
FL1	External AC Field	
L N	Connect the external field supply to terminals FL1 and FL2.	Frame 3: Terminals FL1 & FL2 = D1 & D2 (Not available on Frame 1 units) Used if an external field supply is required to the controller for application reasons. The magnitude of this voltage is determined by the desired field voltage. The supply must be protected externally with suitable fuses.
		IMPORTANT The connection of the controller and the external field supply must be consistent when using an externally supplied field regulator. Always derive the 1phase, 50/60Hz supply from the L1 (Red) and L2 (Yellow) phases of the main power supply, directly or indirectly through a single-phase transformer, with the Red phase connected to terminal FL1 and the Yellow phase to terminal FL2.
		NOTE You must provide branch circuit and overload protection. To change the drive from an internal to an external field type refer to.
	Auxiliary Supply	
	Connect the control supply to terminals L (Live) and N (Neutral).	Frame 3: Terminals L & N = D8 & D7 Single phase, 110/240V ac, 50/60Hz. Note: The auxiliary supply chosen must equate to the contactor coil voltage used.
		IMPORTANT The auxiliary supply terminals must be connected directly to the incoming supply via a fuse or circuit breaker. No series sequencing switches or contacts are permitted without consultation from DC900 Division. Use suitable external fuse protection: the steady state current absorbed by the controller is nominal, the external fuse is determined whiteful by several desired the controller as nominal, the external fuse is determined whiteful by several desired the controller is nominal.
		is determined chiefly by considering the contactor holding VA and the controller cooling fans. Refer to Appendix E: "Technical Specifications" - Power Supply Fuses.

Control Connections

A1

Ramp Speed Setpoint

A4

B3

B4

Connect a 10k potentiometer between terminals A1 and B3. Connect the wiper to A4.

B4 A4 B3 A6

potentiometer

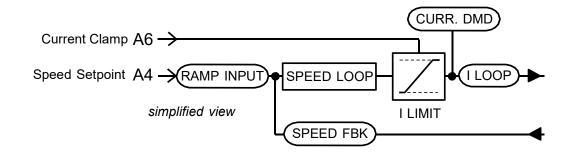
Uni-directional Speed Setpoint

This connection provides a Uni-Directional Speed Setpoint for non-reversing applications and the 2 Quadrant controller (901P):

Maximum forward speed setpoint (+100%) = Terminal B3, +10V input Zero speed setpoint (0%) Terminal B1, 0V input

Thus, zero speed is at the **left** (anti-clockwise) position on the potentiometer.

Bi-directional Speed Setpoint


Alternatively, substitute A1 for terminal B4 to scale the input such that:

Maximum forward speed setpoint (+100%) = Terminal B3, +10V input Maximum reverse speed setpoint (-100%) = Terminal B4, -10V input

Thus, zero speed demand is at the **centre** position on the potentiometer.

motor

In both cases, the Current Limit is controlled via terminal A6 (ANIN5).

Terminals A1, B1 and C1 (Signal 0V) are the common reference points for all analog signals used NOTE in the drive.

Control Connections continued A6 Current Limit This connection provides control of the Positive and Negative Current Clamps and hence the Current Demand via Connect **B3** terminal A6 (ANIN5). The "ANIN 5 (A6)" function block contains parameters to set up maximum/minimum values terminal A6 to for the analog input, and a scaling ratio. **B3.** Adjust the main current limit using the MAIN CURR. LIMIT parameter [Tag No. 15]. Refer to Appendix D: "Programming" - CURRENT LOOP. B3 Fixed Current Limit Current For normal operation of the main current limit, connect Terminal A6 (ANIN5) to Limit Terminal B3 (+10V reference) and set the CURR.LIMIT/SCALER parameter to 200%. Controls A6 This allows the MAIN CURR.LIMIT parameter to adjust the current limit between 0 and Current the 200% full load current. Limit available +10V motor Variable Current Limit torque If external control of the current demand is required, an additional 10K potentiometer connected between Terminal B3 (+10V Ref) and Terminal B1(0V), with the wiper connected to Terminal A6 (Analog I/P5) gives 0 to 200% of full load current provided that the MAIN CURR. LIMIT and CUR. LIMIT/SCALER parameters are set to 200%. **Program Stop/Coast Stop B8** These connections provide a Program Stop (B8), and a Coast Stop (B9). **B9** Connect Refer to Chapter 4: "Operating the Drive" - Starting and Stopping Methods. terminals B8 & B9 to C9 via The "Emergency Stop" relay (normally-open, delay on de-energisation) should not be part of the normal sequencing an Emergency system which is implemented via the Start contacts, but is a relay which can be operated in exceptional Stop relay. circumstances where human safety is of paramount importance. Removing 24V from B9 opens the main contactor via the relay B8 B9 C9 • Removing 24V from B8 provides regenerative braking for 4 Quadrant DC900P drives A regenerative drive can be stopped using a Normal Stop, a Program Stop, or an Emergency Stop. However, a non-regenerative drive can only be made to stop faster than friction and loading will allow by Dynamic Braking. STOP STOP

Control Connections continued Enable Terminal C5 (Enable) must be connected to C9 (+24V) to allow the drive to run. Connect terminal C5 to Connection via a switch is useful to inhibit the drive without opening the main contactor, however, it is not a C9. safe mode of operation as the drive dc output is only reduced to zero. If the equipment controlled by the drive is to be serviced, then this method should be avoided and the drive disabled and isolated. It is important that more than one stop input (ENABLE C5, START/RUN C3, COAST STOP B9, PROG STOP B8) is always used to ensure stopping of the drive under single fault conditions. Start/Run When the single contact between C3 and C9 is closed the drive will run provided that: Connect terminal C3 to B8 & B9 are TRUE (+24V) - see "Emergency Stop" above C9 via a • C5 is TRUE (+24V) - see "Enable" above switch. When the single contact between C3 and C9 is opened the drive will decelerate the motor to zero speed at a rate determined by the STOP TIME parameter's value and the MAIN CURR. LIMIT value. Refer to Appendix D: "Programming" - STOP RATES for further details. If Enable C5 is opened during a Normal Stop sequence, the drive is disabled, the contactor opens, NOTE and the drive will Coast To Stop. Jog/Slack Connect • If the drive is stationary this switch provides a Jog facility. terminal C4 to If the drive is running, this switch provides a Take-Up Slack facility. C9 via a For other user-definable operating modes, refer to Appendix D: "Programming" - JOG/SLACK for further details. switch or pushbutton.

Control Connections continued External Trip C1 Terminals C1 and C2 must be linked if an External Trip interlock is not required. Connect terminal C1 to This input terminal provides an external trip facility to any normally-closed trip switch, e.g. for vent fan overload C2, or link protection. terminals if not required. **Drive Healthy C1** This is one of three digital output terminals that provide a +24V dc output signal under certain conditions. They Connect allow for the connection of relays which, in conjunction with the Enable, Start/Run and Emergency Stop relay, can terminal C1 to be used to enhance the safe starting and stopping of the controller. B6 via a lamp (for example). The drive is "healthy" (TRUE) if there is no Start command. These are configurable outputs and can be used as required in the control system design, i.e. cubicle door lamps, connection to a suitable PLC. **Digital Outputs B5** There are three digital output terminals that provide a +24V dc output signal under certain conditions. They allow User **B6** for the connection of relays which, in conjunction with the Enable, Start/Run and Emergency Stop relay, can be connection to used to enhance the safe starting and stopping of the controller. external **B7** equipment. These are configurable outputs and can be used as required in the control system design, i.e. cubicle door lamps, connection to a suitable PLC. The default actions are: B5 = Zero Speed Detected B6 = Drive Healthy • B7 = Drive Ready Refer to Appendix E: "Technical Specifications" - Terminal Information - Control Board, also Chapter 6: "The Keypad" - DIAGNOSTICS.

Control Connections continued A2 Direct Speed Setpoints A3 Connect Speed Setpoint No. 1 (A2) vour This input is configurable Terminal A2 (Analog Input 1) is a direct speed demand by-passing the "Setpoint Ramp external Generator", and should be used if direct control is required. setpoint(s) and/or A3. Speed Setpoint No. 2 / Current Demand (A3) This input is **not** configurable. Terminal A3 (Analog Input 2) is a dual function terminal (either "Speed Setpoint No. 2" or "Current Demand") as selected by mode switch control "Current Demand Isolate", Terminal C8. As a speed setpoint, it can be used in the same way as Terminal A2. If more than one speed setpoint is used, they are additive. Also refer back to A4, Ramp Speed Setpoint, page 3-22. **Auxiliary Current Clamp (-ve) A5** Used to allow separate control of positive and negative Main Current Clamps, for example, in Winder applications. Connect **B4** terminal A5 to Enable bipolar current clamps by providing 24V at terminal C6. Terminal A5 (ANIN4) is an Auxiliary Current B4 to provide C6 Clamp (-ve), 0 to -10V. -10V. or supply If driven positive, it will form a current demand. externally. The "ANIN 4 (A5)" function block contains parameters to set up maximum/minimum values for the analog input, Connect and a scaling ratio. terminal C6 to With 24V at terminal C6, Terminal A6 (ANIN 5) acts only as the Auxiliary Current Clamp (+ve), 0 to +10V.

C9 to enable

bipolar current clamps.

Control Connections continued Analog Outputs A7 These are configurable outputs and can be used as required in the control system design, i.e. connection to a meter, User for cascading to another drive. connection to external Terminal A7, Analog Output 1 provides a Speed Feedback value, -10V to +10V equipment Terminal A8, Analog Output 2 provides a Total Speed Setpoint value, -10V to +10V The "ANOUT1" and "ANOUT2" function blocks contain parameters to configure the values. **Current Meter Output A9** This connection is for a Current Meter. User The "ARMATURE I (A9)" parameter is used to select either unipolar or bipolar output. Refer to Appendix D: connection to "Programming" - CALIBRATION. external equipment. This ouput is **not** configurable. It is driven directly by hardware. **Digital Inputs** C6 These configurable 24V dc digital inputs are used to control the drive. User connections to The default configurations are: the drive. C8 C6: Current Clamp Select (see **A5** and **A6**) C7: Ramp Hold C8: Current Demand Isolate (see **A3**) Refer to Appendix E: "Technical Specifications" - Terminal Information - Control Board, also Appendix D: "Programming" - DIGITAL INPUTS.

Control Connections continued

Analog Tachometer

G2

G3

G4

User connection to external equipment.

Fit the Tacho Calibration Option Board to the Drive.

This provides terminals G1 to G4.

Refer to O ptional Equipment, page 3-53, for further information.

An Analog Tachometer is connected to the Drive using a screened twisted pair cable throughout its entire length to provide speed feedback via the Tacho Calibration Option Board. This provides facility for an AC or DC tachometer. The screen is grounded or earthed only at the drive end, any other grounding arrangement may cause problems.

- Terminals G1 & G2 are for AC tacho connections.
- Terminals G3 & G4 are for DC tacho connections.

NOTE The speed loop is set-up for an analog tacho by the SPEED FBK SELECT parameter in the SPEED LOOP function block. Select ANALOG TACH for this parameter.

If an AC tachogenerator is used the output is rectified to produce the dc feedback to the speed loop. Consequently, the controller can only be used with a positive setpoint.

Refer to Chapter 4: "Operating the Drive" for set-up information.

Control Connections continued Wire-Ended Encoder E1 Refer to O ptional Equipment, page 3-53, for further information. User **E2** connection to The wire-ended encoder is connected to the Drive using a screened cable throughout its entire length to provide **E**3 external speed feedback. equipment. Terminals E1 (0V) and E2 (+24V dc) are the return and supply respectively. **E4** Fit the NOTE The speed loop is set-up for the Encoder by the SPEED FBK SELECT parameter in the SPEED **Encoder** LOOP function block. Select ENCODER for this parameter. **E5 Option Board** The maximum allowable encoder frequency is 100kHz, thus with a standard 1000 lines per revolution encoder the to the Drive. **E6** motor speed cannot exceed 6000 rpm. This provides For specification and connection information refer to DC900P Drives or the appropriate Technical Manual. terminals E1 to E6. **Technology Box Option** H1 User The Technology Box Option allows drives to be linked together to form a network. We can supply Options for most **H2** connection to protocols. Refer to Appendix D: "Programming" - TEC OPTION for information about Technology Box Option external types. **H3** equipment. For detailed information, refer to the appropriate Technical Manual supplied with the Technology Box. **H4** Fit the **Technology H5 Box Option to** the Drive. H6 This provides terminals H1 to H6.

MotorFieldOptions

WARNING

Isolate the drive before converting to internal/external supply.

The FIELD CONTROL function block controls the motor field. The FLD CTRL MODE parameter allows you to select either Voltage or Current Control mode.

- In Voltage Control mode, the FLD. VOLTS RATIO parameter is used to scale the motor field output voltage as a percentage of the input supply voltage.
- In Current Control mode, the SETPOINT parameter is used to set an absolute motor field output current, expressed as a percentage of the calibrated field current (IF CAL).

Internal/External Supply (Frames 2, 3, 4)

NOTE

The Frame 1 unit allows only an internal motor field supply. For information about the following terminal/power boards refer to Appendix E: "Technical Specifications" - Terminal Information (Power Board).

The internal motor field is more widely used, however, there is provision on the unit for an external motor field supply to be connected (perhaps for where the field voltage is greater than the input voltage and therefore not attainable, or where the motor field is switched separately for convenience).

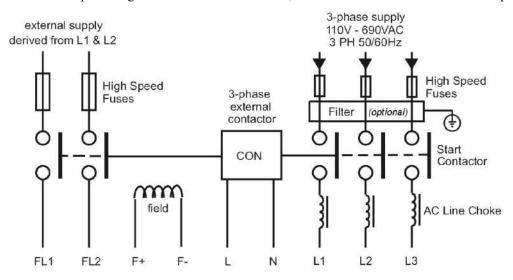
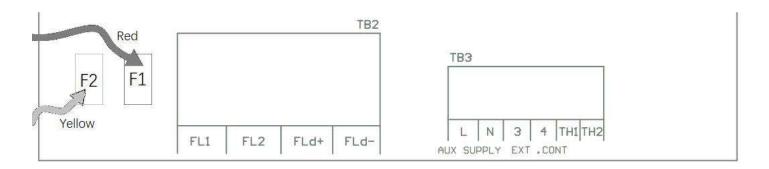



Figure 3-12 Typical connection diagram

Reference 030101011 (Frame 2)

The position of the jumper selects the board to use either an internal or external motor field.

Internal Motor Field (default for this board)

Terminals F+ and F-, the motor field outputs, are energised when the 3-phase supply is connected to L1/L2/L3. Terminals FL1 and FL2 are not required. The internal motor field supply is fused by 10A fuses, FS5 &FS6.

External Motor Field Connections

Terminals FL1 and FL2 can be used for external ac supply connection for the Motor Field Supply. You should provide suitably rated external, fast-acting semi-conductor fusing, to a maximum of 10A.

Caution

When using an external ac input it is important to have the correct phase relationship on the terminals. The supply must be derived from L1 (Red) and L2 (Yellow) phases directly or indirectly through a single-phase transformer.

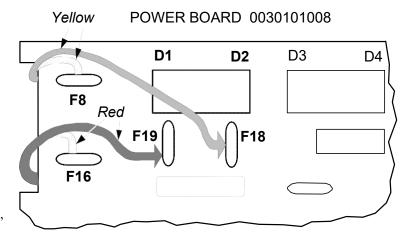
L1 must be connected to FL1through F1, and L2 connected to FL2 through F2.

The external field supply can now be connected and power restored to the drive.

Power Board-PCB Reference 030101008 (Frame 3)

This power board (printed with the above number) can be altered for use with either an internal or external motor field supply:

Internal Motor Field (default for this board)


Terminals D3 and D4, the motor field outputs, are energised when the 3-phase supply to L1/L2/L3 is energised and the internal motor field is used. Terminals D1 and D2 are not energised. The internal motor field supply is fused by the 10A fuses, FS2 & FS3.

External Motor Field Connections

Terminals D1 and D2 on the Power Board can be used for an external ac supply connection for the Motor Field Supply.

A simple re-wiring procedure disconnects the internal motor field supply and prepares terminals D1 and D2 for the external ac supply connection.

You should provide suitably rated external, fast-acting semi-conductor fusing, to a maximum of 10A.

Re-Wiring Procedure

WARNING

Isolate all power to the drive.

- 1. Loosen the control board fixing screws (2 off) and position the control board to allow access to the power board.
- 2. Remove the **red** link from the Faston connector "F16" on the left-hand side of the board and connect it to staging post "F19", located below terminal D1.
- 3. Remove the **yellow** link wire from the Faston connector "F8" on the left-hand side of the board and connect it to staging post "F18", located below terminal D2.

Caution

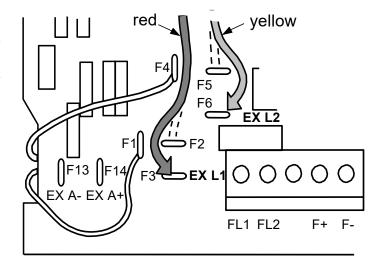
When using an external ac input it is important to have the correct phase relationship on the terminals. The supply must be derived from L1 (Red) and L2 (Yellow) phases directly or indirectly through a single phase transformer.

L1 must be connected to D1, and L2 connected to D2.

The external field supply can now be connected and power restored to the drive.

This power board (printed with the above number) can be altered for use with either an internal or external motor field supply:

Internal Motor Field (default for this board)


Terminals F+ and F-, the motor field outputs, are energised when the 3-phase supply to L1/L2/L3 is energised and the internal motor field is used. Terminals FL1 and FL2 are not energised. The internal motor field supply is fused by the 30A fuses FS1 and FS2.

External Motor Field Connections

Terminals FL1 and FL2 on the Power Board can be used for an external ac supply connection for the Motor Field Supply.

A simple re-wiring procedure disconnects the internal field supply and prepares terminals FL1 and FL2 for the external ac supply connection.

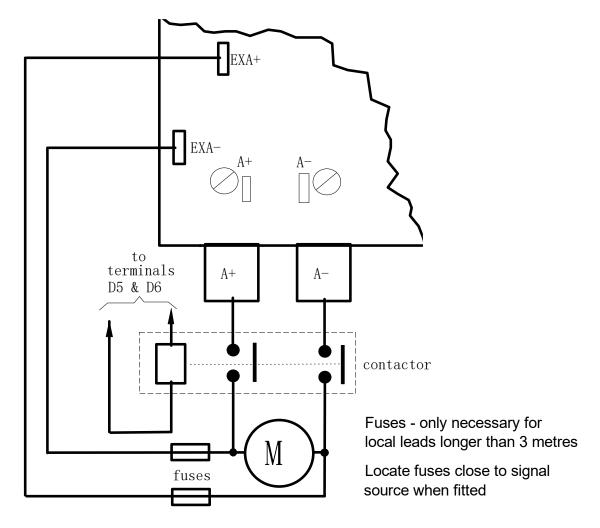
You should provide suitably rated external, fast-acting semi-conductor fusing, to a maximum of 30A.

Re-Wiring Procedure

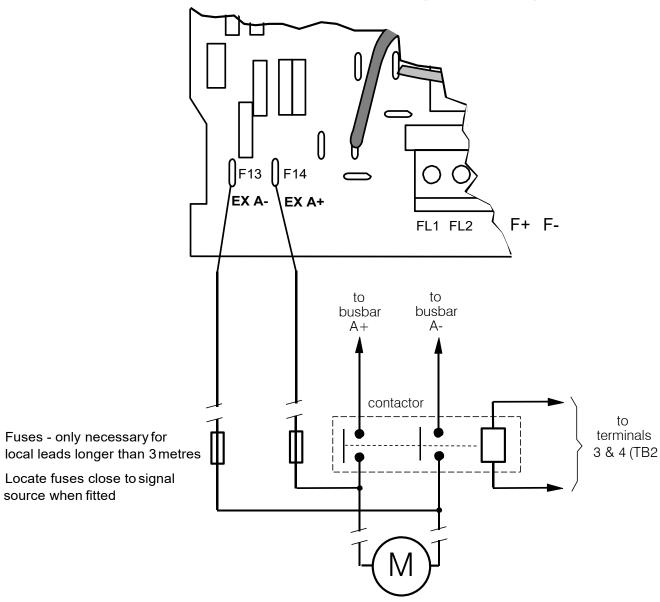
WARNINGIsolate all power to the drive.

- 1. Loosen the control board fixing screws (2 off) and position the control board to allow access to the power board.
- 2. Remove the **red** link from the Faston connector "F2" and connect it to the staging post "F3" nearby (EXL1).
- 3. Remove the **yellow** link wire from the Faston connector "F5" and connect it to the staging post "F6" nearby (EXL2).

Caution


When using an external ac input it is important to have the correct phase relationship on the terminals. The supply must be derived from L1 (Red) and L2 (Yellow) phases directly or indirectly through a single phase transformer.

L1 must be in phase with FL1, and L2 must be in phase with FL2


DCContactor-ExternalVaSensing

Connections are provided for external armature voltage sensing (at the motor) for when a dc contactor is used between the drive and motor.

Power Board - PCB Reference 030101008 (Frame 3)

Power Board-PCB Reference 030101005 (Frames 4)

Power Board Circuit Descriptions

030101013 (Frame 1)

(2 Quad and 4 Quad)

Power supplies for the controller are generated from the single phase auxiliary supply via a Switched Mode Power Supply. The incoming supply is directly rectified to provide a high voltage dc power rail. A high voltage transistor switches this rail on to the primary of a high frequency transformer, the output of which is rectified and smoothed to provide the dc power supply rails. The +15V dc rail is monitored via a reference element and a control signal returned via an opto-isolator to the control element of the high voltage switching transistor. The other dc rails (-15V & +24V dc) are generated via separate secondary windings which are rectified and smoothed, with a separate SMPS element providing a regulated +5V dc rail. The SMPS operates over a0n input voltage range of 110V to 240V ac ±10%, 50/60Hz.

)0(MUST MADE DON'T CET THE THE FL+ FL- LI LZ L3

112

Figure 3-13 900P Power Board 4 Quad

3-32 Installing the Drive

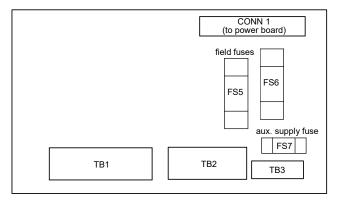
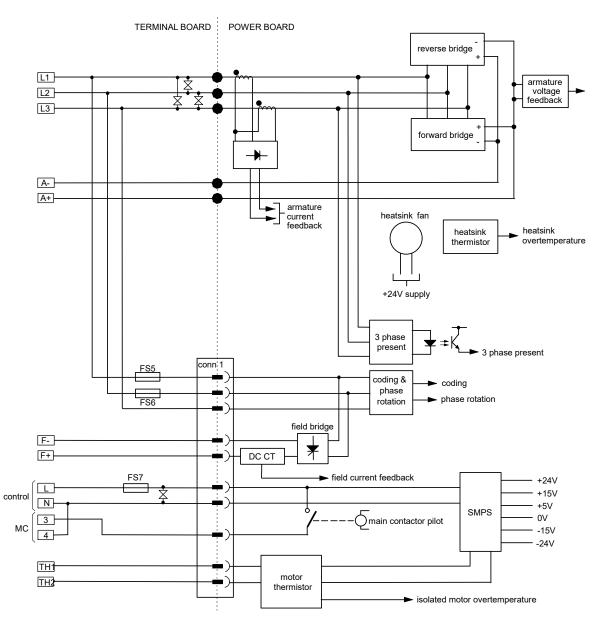
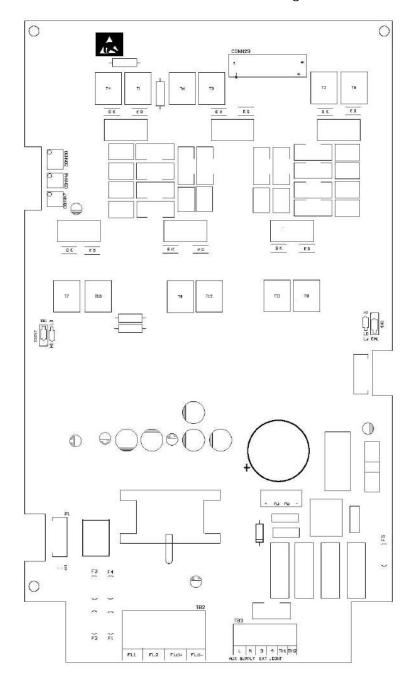


Figure 3-14 Terminal Board




Figure 3- 15 Connection Diagram for Power Board and Terminal Board - 030101013 (Frame 1)

030101011 (Frame 2)

(2 Quad and 4 Quad)

Power supplies for the controller are generated from the single phase auxiliary supply via a Switched Mode Power Supply. The incoming supply is directly rectified to provide a high voltage dc power rail. A high voltage transistor switches this rail on to the primary of a high frequency transformer, the output of which is rectified and smoothed to provide the dc power supply rails. The +15V dc rail is monitored via a reference element and a control signal returned via an opto-isolator to the control element of the high voltage switching transistor. The other derails (-15V & +24V dc) are generated via separate secondary windings which are rectified and smoothed, with a separate SMPS element providing a regulated +5V dc rail. The SMPS operates over an input voltage range of 110V to 240V ac $\pm 10\%$, 50/60Hz.

Figure 3- 16 900P Power Board

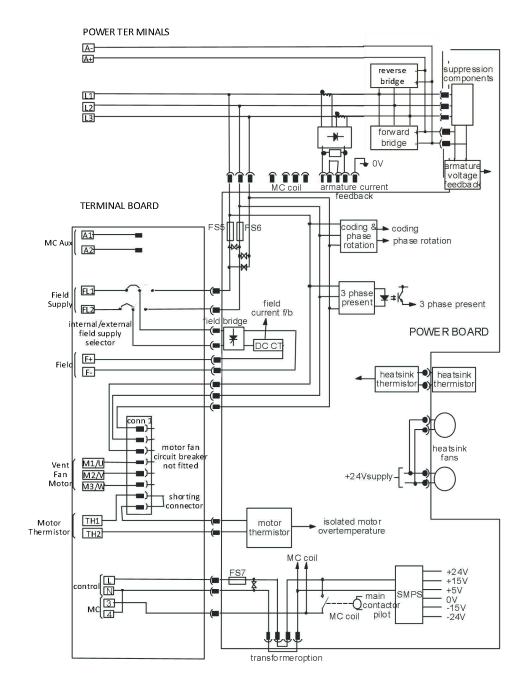
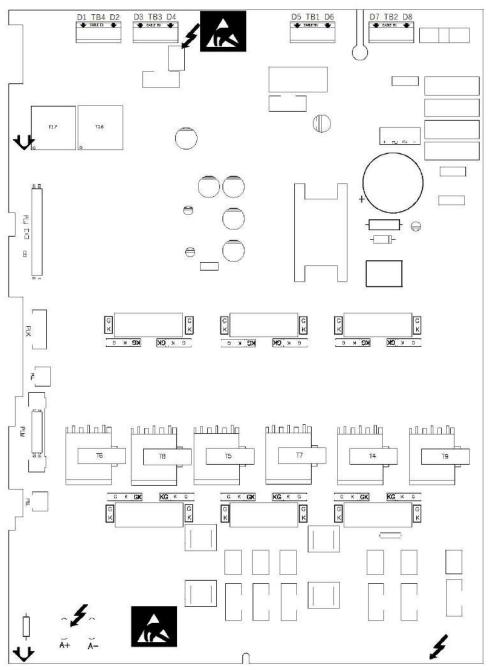



Figure 3-17 030101011 (Frame 2)

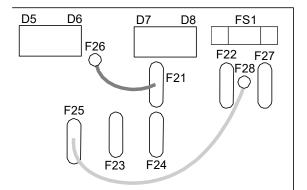
030101008 (Frame 3)

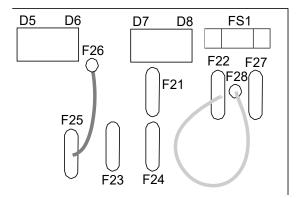
(900P - 4 Quad, 901P - 2 Quad; Low and High Volt) Power supplies for the controller are generated from the single phase auxiliary supply via a switched mode power supply. The incoming supply is directly rectified to provide a high voltage dc power rail. A high voltage transistor switches this rail on to the primary of a high frequency transformer, the output of which is rectified and smoothed to provide the dc power supply rails. The +5V dc rail is monitored via a reference element and a control signal returned via an opto-isolator to the control element of the high voltage switching transistor. The ± 15 V dc rails are generated via separate secondary windings which are rectified, smoothed and stabilised by linear regulators. The SMPS operates over an input voltage range of 110V to 240V ac $\pm 10\%$, 50/60Hz. The auxiliary supply fuse FS1 provides protection of the high voltage elements.

Figure 3- 18 901P Power Board 2 Quad (030101008) - (Frame 3)

Heatsink Cooling Fan Connections

When fitted, these fans are connected on the power board to FAN LIVE (F27), FAN NEUTRAL (F24) and FAN COMMON (F23) as described below:


- A single fan must be matched to the auxiliary supply and connected to F27 and F24.
- Two fans using a 110/115V auxiliary supply must be connected in parallel to F27 and F24.
- Two fans using a 220/240V auxiliary supply must be connected in series to F27 and F24 using F23 as the centre point.


Contactor Supply

The controller requires an ac or dc power contactor in series with the main power path to ensure correct power-up sequencing. This contactor is directly initiated by the Microcontroller via an isolating relay which drives the contactor coil with the same voltage as that of the auxiliary supply.

This is achieved by the brown wire connection from COIL LIVE (F28) to RELAY (F25) and the blue wire connection from COIL NEUTRAL (F21) to CONTACTOR RETURN (F26).

However, if an alternative supply for the contactor coil is required move the brown wire from F25 to F22, and move the blue wire from F21 to F25. The external coil supply can now be switched using a volt-free contact between terminals D5 and D6.

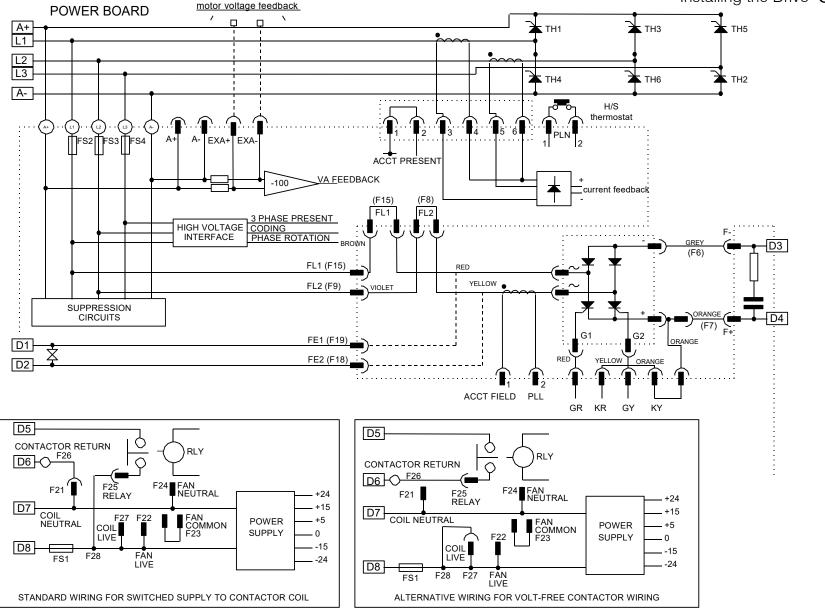
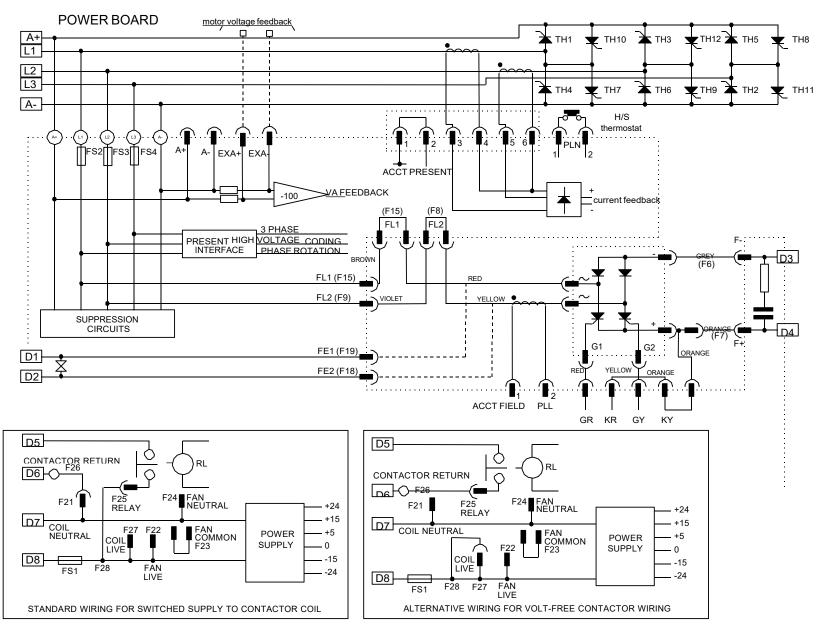
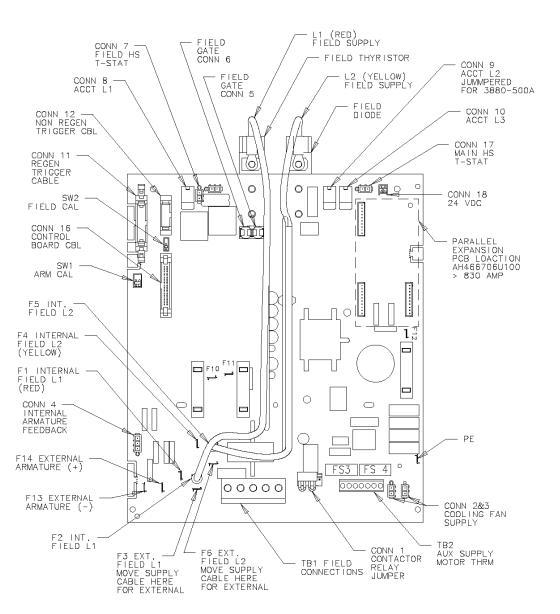


Figure 3-19 37 Quad Power Circuit - using 030101008 (Frame

D1 TB4 D2 D3 TB3 D4 D7 TB2 D8 D5 TB1 D6 E K CK KC K E KC K C KC K C B K CK TIO T3 وامالمالم plolof plalalq واعلمان plalalq plololq plalalq T5 G K GK 6 к **GK** KG K G C K GK KG K S

Figure 3- 20 900P Power Board 4 Quad (030101008) - (Frame 3)




Figure 3-21 4 Quad Power Circuit - using 030101008 (Frame 3)

030101005 (Frames 4)

900P 4 Quad and 901P 2 Quad; Low, Medium and High Volt

Power supplies for the controller are generated from the single phase auxiliary supply via a Switched Mode Power Supply. The incoming supply is directly rectified to provide a high voltage de power rail. A high voltage transistor switches this rail on to the primary of a high frequency transformer, the output of which is rectified and smoothed to provide the dc power supply rails. The +15V dc rail is monitored via a reference element and a control signal returned via an opto-isolator to the control element of the high voltage switching transistor. The other dc rails (-15V & +24V dc) are generated via separate secondary windings which are rectified and smoothed, with a separate SMPS element providing a regulated +5V dc rail. The SMPS operates over an input voltage range of 110V to 240V ac $\pm 10\%$, 50/60Hz.

Figure 3- 22 900P/901P Power Board

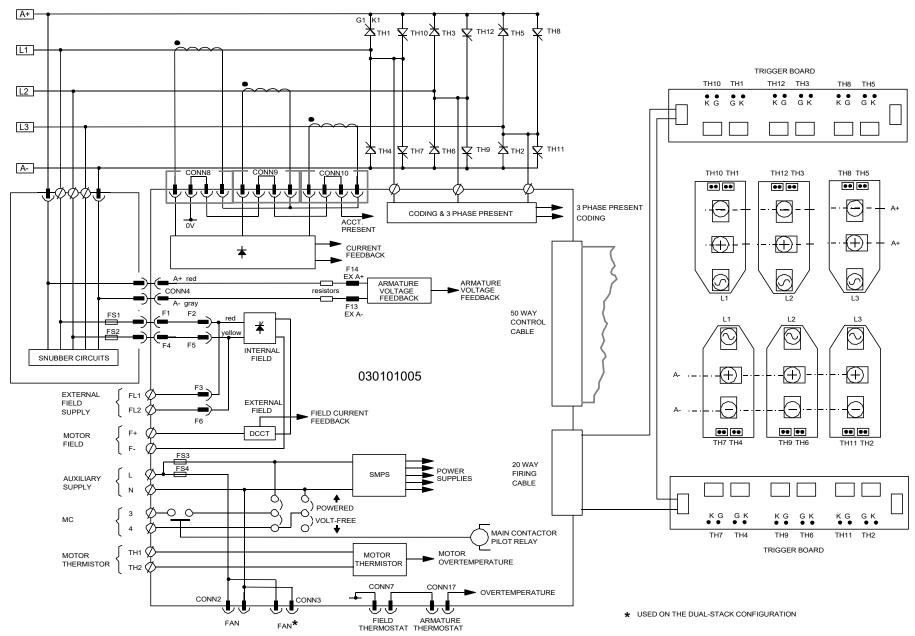


Figure 3-23 4 Quad Power Circuit – Frame 4 Units using 030101005

3-42 Installing the Drive

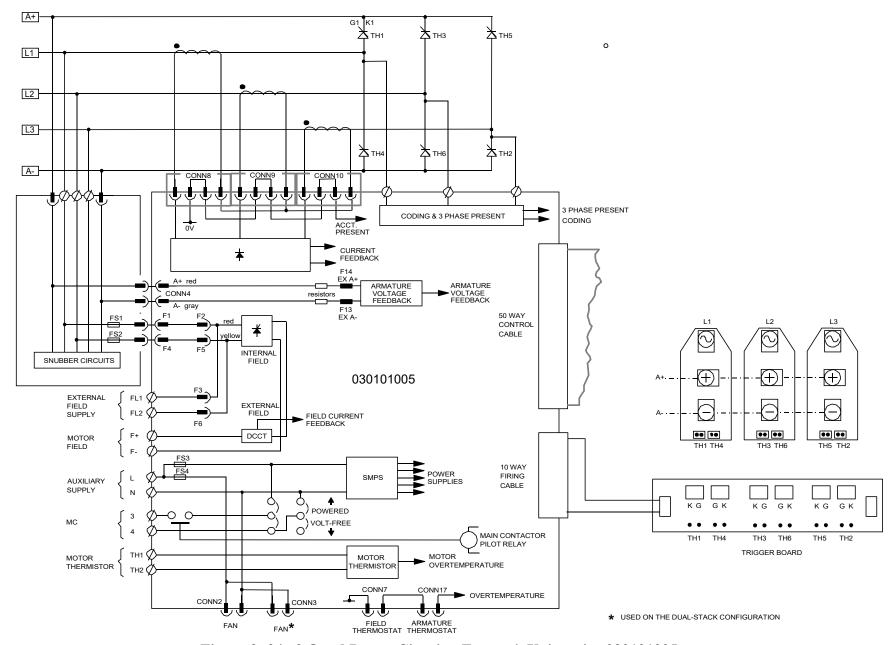


Figure 3- 24 2 Quad Power Circuit – Frame 4 Units using 030101005

Optional Equipment

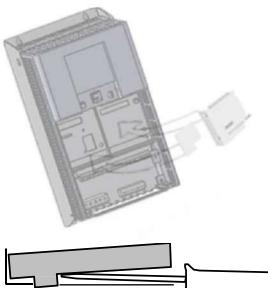
Contact your local D Drives office to order optional equipment.

Item	Part Number
900 Digital Section Control	
A DC900P Drives application manual detailing the use of the block diagram to	
implement open and closed loop control of driven web section rolls	
CACT	
DC900P Drives' Windows-based block programming software	
Encoder Option Board	030101004
A board to interface to a wire-ended encoder	
Tacho Calibration Option Board	030101007
A switchable calibration board for interfacing to AC/DC analog	
tachogenerators	
Comms Option Board (P1) Board	
Two board types for supporting EI BYSYNCH or PROFIBUS communication	
protocols for connection to other equipment.	
• RS485	030101018
PROFIBUS	
PROFINT	030101009

Remote Mounting the Keypad

The 6052 Mounting Kit is required to remote-mount a 6901 or 6911 Keypad. An enclosure rating of IP54 is achieved for the remote Keypad when correctly mounted using the 6052 Mounting Kit

Speed Feedback and Technology Options


The Options are:

- 1. Speed Feedback (Analog Tacho Calibration Option Board or Encoder Feedback Option
- 2. Communications Technology Box (Profinet, Profibus, Serial RS485)

They are inserted separately into the specified position, as illustrated.

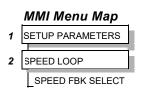
You can operate the Inverter with the Speed Feedback and/or Communications Technology Options.

Refer to the appropriate Technology Option Technical Manual for further information.

Remova

After removing the earthing screw, remove the COMMS option by carefully pushing a long screwdriver (for instance) under the option and gently levering it out. The pins are protected by the option moulding.

WARNING

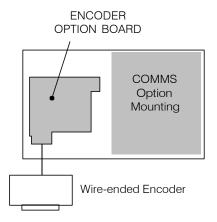

Isolate the drive before fitting or removing the options.

Speed Feedback Option Boards

Each option board below is shown with the correct selection for the SPEED FBK SELECT parameter.

The selections are ARM VOLTS FBK, ANALOG TACH, ENCODER and ENCODER/ANALOG.

(ARM VOLTS FBK is default and requires no option board).

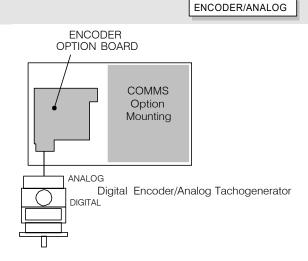


ENCODER

Wire-Ended Encoder Option Board

The board accepts connection from a wire-ended encoder.

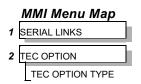
If fitted, refer to the Encoder Technical Manual for further information.



Combined Tacho and Encoder Feedback

If an analog tachogenerator and digital encoder are to be used, the Encoder Option Board receives the digital signal, the analog signal is routed to Terminals B2 (Tacho) and B1 (0V).

Note: External scaling resistors are required for the Analog Tacho Feedback and a shorting link inserted in the analog plug to directly connect terminal B2 to the analog speed feedback input.


Please refer to DC900P Drives Engineering Department for assistance with this feature .

Communications Technology Options

Various protocols are supported, each requiring a different Technology Box. The type of Technology Box fitted is selected in the TYPE parameter:

- RS485 (EI BINARY, EI ASCII or MODBUS RTU)
- PROFIBUS DP



COMMS Option Technology Box

The option allows the DC900P Drive to be controlled as part of a system.

The system can also comprise other products such as the 605 and 584SV Inverters, or any other equipment using the same protocol.

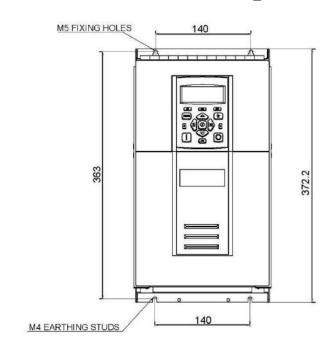
IMPORTANT: The comms option should not be fitted or removed whilst the product is powered.

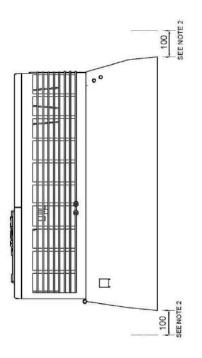
Earth Fault Monitoring Systems

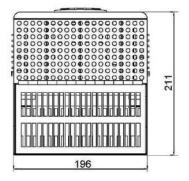
WARNING

Circuit breakers used with VSDs and other similar equipment are not suitable for personnel protection. Use another means to provide personal safety. Refer to EN50178 (1998) / VDE0160 (1994) / EN60204-1 (1994)

We do not recommend the use of circuit breakers (e.g. RCD, ELCB, GFCI), but where their use is mandatory, they should:


- Operate correctly with dc and ac protective earth currents (i.e. type B RCDs as in BS EN61009-1:2004).
- Have adjustable trip amplitude and time characteristics to prevent nuisance tripping on switch-on.


NOTE


When the ac supply is switched on, a pulse of current flows to earth to charge the EMC filter internal capacitors which are connected between phase and earth. This has been minimised in DC900P Drives filters, but may still trip out any circuit breaker in the earth system. In addition, high frequency and dc components of earth leakage currents will flow under normal operating conditions. Under certain fault conditions larger dc protective earth currents may flow. The protective function of some circuit breakers cannot be guaranteed under such operating conditions.

Installation Drawings

Drive Installation Drawings

NOTES

- 1.FOR DETAILS OF ELECTRICAL CONNECTIONS SEE PRODUCT MANUAL.
 2.AT LEAST 100mm CLEARANCE ABOVE AND BELOW UNIT MUST BE PROVIDED FOR COOLING AIR.
- 3.IT IS NECESSARY TO REMOVE FRONT COVER AND GLAND PLATE WHEN ELECTRICALCONNECTIONS ARE BEING MADE.
- 4.MECHANICAL MOUNTING FIXING ARE NOT SUPPLIED.

Figure 3-28 Frame 1:20A & 35A Stack Assembly

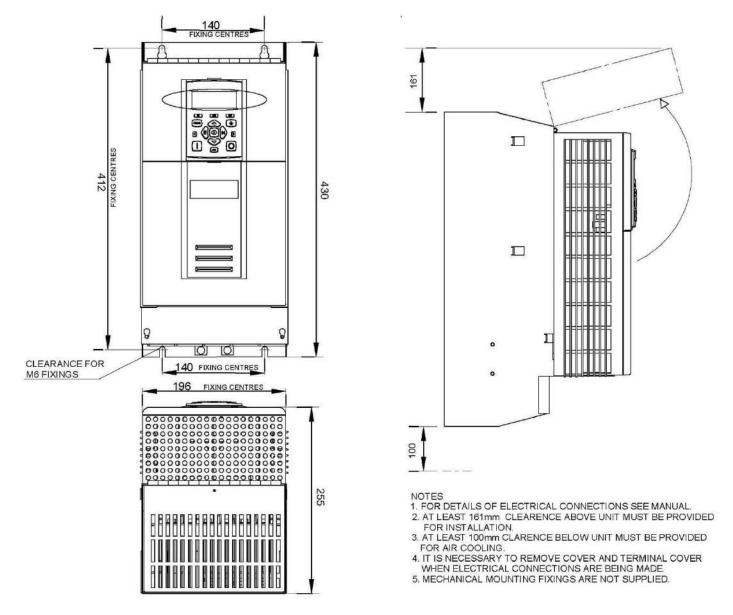


Figure 3-29 Frame 2:40A-160A Stack Assembly

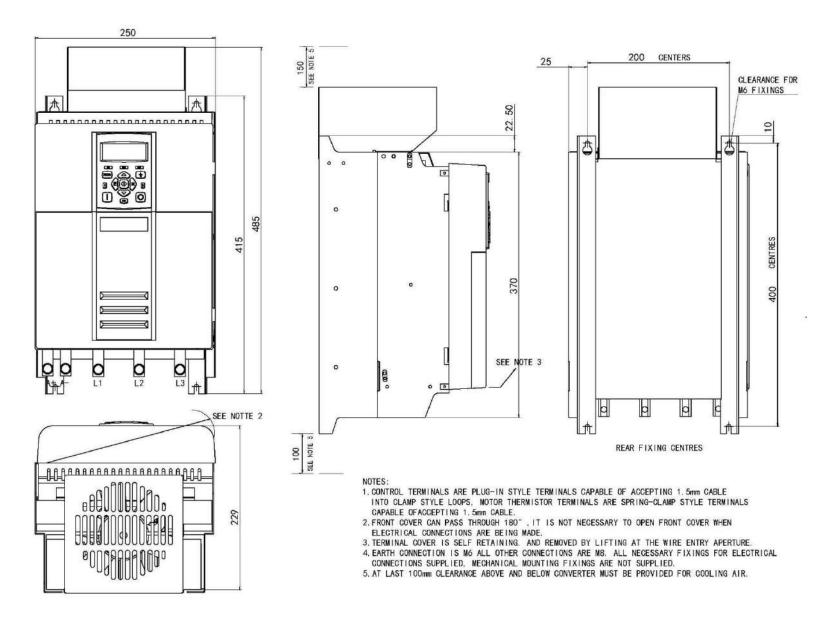


Figure 3-30 Frame 3: 200A Stack Assembly

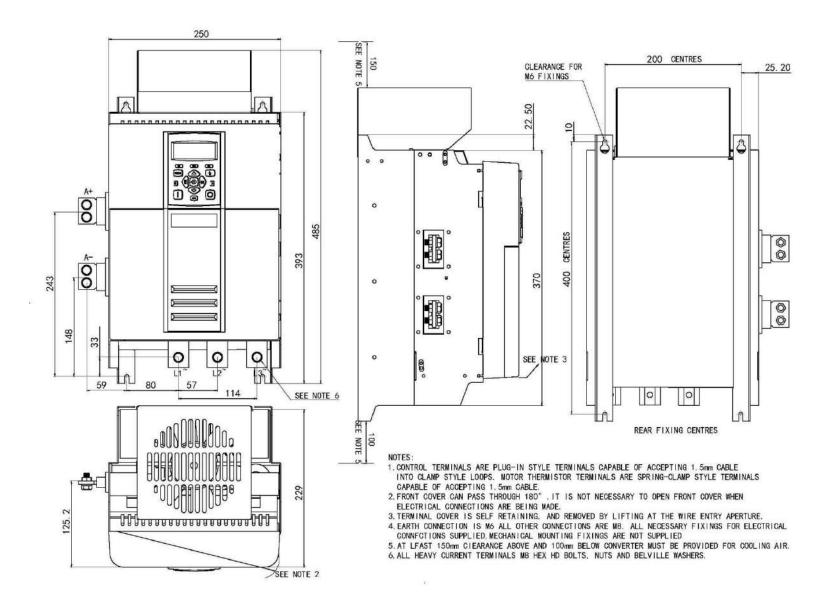


Figure 3-31 Frame 3: 280A Stack Assembly

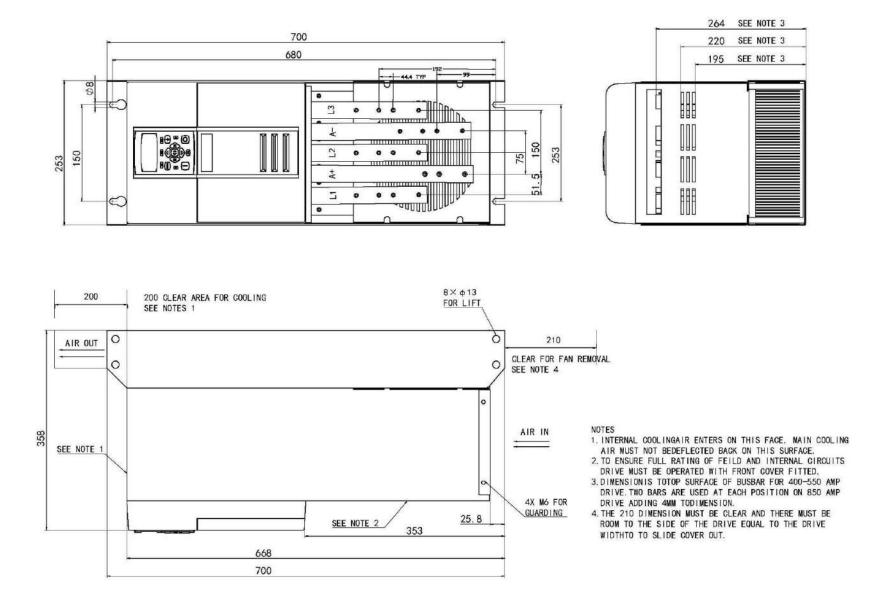


Figure 3-32 Frame 4: 400-850A Stack Assembly

Chapter 4 Operating the Drive

Learn how to turn the motor for the first time, and about the various ways you can start and stop the drive. This chapteralso offers some application advice.

Pre-Operation Checks	4-1
Control Philosophy	4-2
Start/Stop and Speed Control	4-2
Setting-up the Drive	4-5
 Calibrating the Control Board 	4-5
 Selecting Speed Feedback 	4-7
Initial Start-Up Routine	4-8
 Performance Adjustment 	4-15

Starting	4-18	
•	Stopping Methods	4-18
•	Normal Starting Method	4-24
•	Advanced Starting Methods	4-25
External	Control of the Drive	4-27

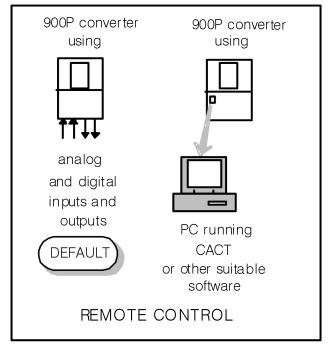
Pre-Operation Checks

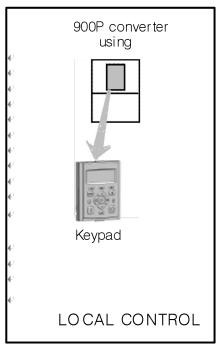
Initial checks before applying power:

- Mains power supply voltage is correct.
- Auxiliary power supply voltage is correct.
- Motor is of correct armature voltage and current rating.
- Check all external wiring circuits power, control, motor and earth connections.

NOTE Completely disconnect the drive before point-to-point checking with a buzzer, or when checking insulation with a Megger.

- Check for damage to equipment.
- Check for loose ends, clippings, drilling swarf etc. lodged in the Drive and system.
- If possible check that the motor can be turned freely, and that any cooling fans are intact and free from obstruction.


Ensure the safety of the complete system before the drive is energised:


- Ensure that rotation of the motor in either direction will not cause damage.
- Ensure that nobody else is working on another part of the system which will be affected by powering up.
- Ensure that other equipment will not be adversely affected by powering up.

Prepare to energise the drive and system as follows:

- Remove the main external HRC fuses to prevent the main 3-phase and single phase auxiliary supply from being connected.
- Disconnect the load from the motor shaft, if possible.
- If any of the Drive's control terminals are not being used, check whether these unused terminals need to be tied high or low. Refer to Appendix E: "Technical Specifications"- Terminal Information Control Board.
- If there is any doubt about the integrity of a particular installation, insert a high wattage resistor, i.e. fire elements, in series with the motor armature.
- Check external run contacts are open.
- Check external speed setpoints are all zero.

Control Philosophy

There are four ways to control the Drive using Remote and Local control:

Figure 4-1 Remote and Local Control Modes

Start/Stop and Speed Control

There are two forms of control in operation at any time: *Start/Stop* and *Speed Control*. Each can be individually selected to be under either Local or Remote Control.

- Local or Remote Start/Stop decides how you will start and stop the Drive.
- Local or Remote Speed Control determines how you will control the motor speed.

In each case, Local and Remote control are offered by using the following:

Local: The Keypad

Remote: Analog and digital inputs and outputs, System Port P3 or the Technology Option

Thus the Drive can operate in two modes:

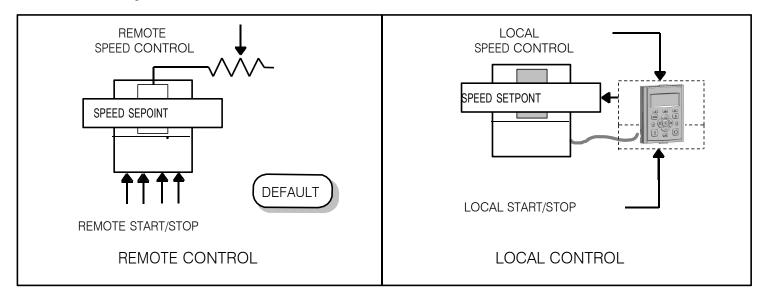


Figure 4-2 Local and Remote Control

NOTE Start/Stop is also known as "Sequencing".

Speed Control is also known as "Reference Generation".

Selecting Local or Remote Control

DEFAULT

The default is for the *L/R* key to be set for Remote control, i.e. both the SEQ and REF LEDs will be off.

If the default Remote Start/Stop and Speed Control is not suitable for your application, follow the instructions below using the Keypad or a suitable PC programming tool to select Local Start/Stop and Speed Control.

NOTE You can only change between Local and Remote control when the Drive is "stopped".

The L/R key on the Keypad toggles between Local and Remote control, changing both Start/Stop and Speed Control modes at the same time.

LED Indications

The mode of control is indicated by the "LOCAL" LEDs on the Keypad:

SEQ = Start/Stop REF = Speed Control

If the LED is illuminated (1), then LOCAL mode is in force.

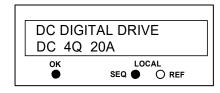


Figure 4-3 Control Mode LED Indications

4-4 Operating the Drive

Operation in Local Mode

The drive requires the following power terminals to be connected for operation in Local control.

3-phase supply via contactor Auxiliary supply 3-phase contactor coil Motor thermistor TH1 & TH2 Motor armature Motor field

The drive requires the following control terminals to be active for operation in Local control.

Current Limit (jumper A6 to B3)
Program Stop - high (jumper B8 to C9)
Coast Stop - high (jumper B9 to C9)
External Trip - low (jumper C1 to C2)
External Enable - high (jumper C5 to C9)

To run in Local control:

Press the L/R key to enable Local control as detailed above On the Keypad press the RUN key (1) to start the unit Use the UP (2) and DOWN (2) keys to control the speed On the Keypad press the STOP key (2) to stop the unit

Setting-up the Drive

IMPORTANT

You must not exceed the maximum drive and motor ratings. Refer to the Product Code or maximum rating label, and the motor rating plate.

The following start-up routine assumes that the Keypad is connected and is in default mode, and that the Drive's control terminals are wired as shown in the Minimum Connection diagrams in Chapter 3.

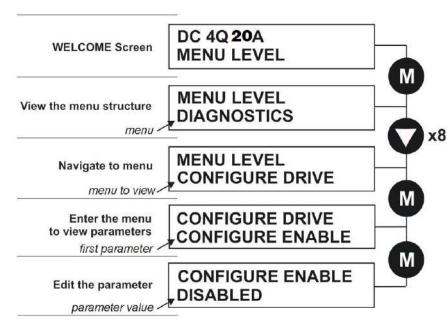
The following instructions are written in logical order. Complete each stage successfully before progressing to the next.

Calibrating the Control Board

AUXILIARY POWER ONLY IS CONNECTED AT THIS STAGE

You must first calibrate the Drive for use with the motor.

Connect the auxiliary power supply to auxiliary supply terminals L & N (Frame 3: Terminals L & N = D8 & D7), but do not connect the main 3-phase power supply at this stage. Check that the correct voltage appears between these terminals.


The Keypad will now display the Welcome screen, and the Health and Forward LEDs will be illuminated (assuming that the Drive's control terminals are

wired as shown in Figure 3-4, Minimum Connection Requirements).

NOTE

The CONFIGURE DRIVE menu at the top of the menu tree contains many of the important parameters used during set-up.

Refer to Chapter 6: "The Keypad" to familiarise yourself with the keypad's LED indications, and how to use the keys and menu structure.

MMI Menu Map

CONFIGURE DRIVE

CONFIGURE ENABLE
NOM MOTOR VOLTS
ARMATURE CURRENT
FIELD CURRENT
FLD. CTRL MODE
FLD. VOLTS RATIO
MAIN CURR. LIMIT
AUTOTUNE
SPEED FBK SELECT
ENCODER LINES
ENCODER RPM
ENCODER SIGN
SPD. INT. TIME
SPD. PROP. GAIN

Set the following parameters:

CONFIGURE ENABLE

Set to TRUE. This allows you to change parameter values, but the drive cannot run.

NOM MOTOR VOLTS – Armature Voltage (VACAL)

If the drive is designed for use on a nominal 3-phase power supply of 500, 600 or 690V, set the Armature Voltage value in the NOM MOTOR VOLTS parameter.

OR

If the drive is designed for use on a nominal 3-phase power supply of 220V, set DOUBLE the Armature Voltage value in the NOM MOTOR VOLTS parameter.

NOTE Refer to the Product Code on the drive's Rating Label to confirm the drive's specification. Also refer to Appendix E: "Technical Specifications" - Understanding the Product Code.

ARMATURE CURRENT (IA CAL)

Note the maximum armature current from the motor rating plate and set this value in the ARMATURE CURRENT parameter.

FIELD CURRENT (IF CAL)

Note the nominal field current from the motor rating plate and set this value in the FIELD CURRENT parameter.

FLD.CTRL MODE

Set the field control mode to Field Voltage or Field Current control. Refer to Appendix D: "Programming" - FIELD CONTROL for further information. By default, the drive is operating in Voltage Control mode.

FLD.VOLTS RATIO

Enter the calculated ratio into the parameter given by the equation:

The maximum value obtainable is 90%, i.e. field output = $0.9 \times Vac$. Setting this parameter higher than the default 90% will not increase the field output.

Selecting Speed Feedback

AUXILIARY POWER ONLY IS CONNECTED AT THIS STAGE

Using the Keypad, select the correct speed feedback option. The default is ARM VOLTS FBK.

The selections are ARM VOLTS FBK, ANALOG TACH, ENCODER and ENCODER/ANALOG.

MMI Menu Map

CONFIGURE DRIVE

SPEED FBK SELECT

NOTE Refer to Chapter 3: "Installing the Drive" - Speed Feedback and Technology Options for further information.

Speed Feedback Option Boards

Analog Tacho Calibration Option Board

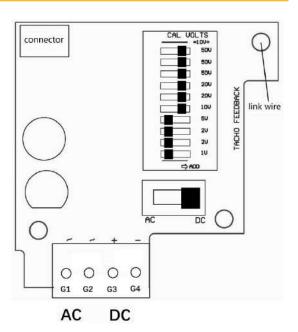
WARNING

Do not fit this Option Board with the drive powered-up.

NOTE This option is not required if armature voltage or encoder feedback is to be used.

The board plugs into the front of the drive. Mount it on the 10-pin connector correctly using the 4 left-hand pins. This will allow the locating pegs to align with the mounting holes. It also requires the connecting link wire to the control board. This link is inherent but must be connected for operation.

The board supports AC and DC analog tachos with a calibration range of 10 to 200V:


- For AC tacho feedback, use terminals G1 and G2 with the selector switch in the AC position.
- For DC tacho feedback, use terminals G3 and G4 with the selector switch in the DC position

Calculate the tacho voltage by multiplying the required maximum speed by the tacho calibration factor, e.g. motor speed 1500 rpm and tacho calibration factor 60V per 1000 rpm is 90V.

This product may be fitted with a new version of the Analog Tacho Calibration Board:

ORIGINAL: The original option has part number AH30101007 and the tacho calibration volts are set using the 2 in-line switches (10-way). The switches set Volts in units and tens. The hundreds are set by the 1-way switch. The illustration shows a setting of 90V. When setting switches

for AC tachos, calibrate the switches for $\sqrt{2}$ x voltage feedback required, i.e. $\sqrt{2}$ x 90V = 127V. This adjusts the rms value received from an AC tacho into the required peak value.

Initial Start-Up Routine

Complete steps 1 to 18, including steps 16 and 17 as appropriate.

NOTE

This routine assumes that the Drive's control terminals are wired as shown in the Minimum Connection Requirements drawings in Chapter 3. The field is "Enabled" and is in Voltage Control (default settings).

IMPORTANT

Do not change any of the previously made calibration settings once the main contactor is energised.

Step 1: Check the Speed Setpoints operate correctly

ANIN1 (terminal A2): an additional setpoint ANIN2 (terminal A3): an additional setpoint

ANIN3 (terminal A4): this is the normal speed reference source

Use the Keypad to display the value of the ANIN 3 (A4) (and the additional setpoints if present).

Vary the setpoint potentiometer and observe the input voltage change.

The sum of all the setpoints is given by the value of the SPEED SETPOINT parameter. This is also output at terminal A8.

Step 2: Check the External Current Clamps

Use the Keypad to check the operation of the external current clamp settings (refer to Appendix D: "Programming" - ANALOG INPUTS for setting details).

• If using a single external clamp (Unipolar), terminal C6 low (0V):

Check that ANIN 5 (A6) is +10V or is adjustable up to +10V Set to +10V

• If using dual external clamps (Bipolar), terminal C6 high (+24V):

Check the ANIN 5 (A6) is at +10V or is adjustable up to +10V

Check that ANIN 4 (A5) is at -10V or is adjustable up to -10V

Set to +10V

Set to -10V

Setting the current clamps to 10V means that the current demand is controlled by the MAIN CURR. LIMIT parameter for the purposes of this initial Start routine.

Step 3: Check the Speed Feedback signals

If possible, check the speed feedback by rotating the shaft manually in the forward direction.

• Analog Tachogenerator:

The Analog Tach Input should go positive.

MMI Menu Map

DIAGNOSTICS

_ANIN 1 (A2)

ANIN 2 (A3)

_ANIN 3 (A4)

SPEED SETPOINT

MMI Menu Map

1 DIAGNOSTICS

ANIN 4 (A5) ANIN 5 (A6)

MMI Menu Map

DIAGNOSTICS

ENCODER

SPEED FEEDBACK
TACH INPUT

Step 4: Select the Speed Feedback method

Write down the MAIN CURR. LIMIT parameter's value here:

%

Set the MAIN CURR. LIMIT parameter to 0.00%.

SETUP PARAMETERS

MMI Menu Map

CURRENT LOOP MAIN CURR. LIMIT

MMI Menu Map

SPEED FBK SELECT

MMI Menu Map

PROGRAM STOP

CONTACTOR CLOSED

DIAGNOSTICS

CONFIGURE DRIVE

MMI Menu Map

PARAMETER SAVE PARAMETER SAVE

Perform a PARAMETER SAVE. Refer to Chapter 6: "The Keypad" - Saving Your Application.

Select ARMATURE VOLTAGE initially for the speed feedback method in the SPEED FBK SELECT parameter.

Step 5: Start the Drive using Auxiliary Power only

With +24V present at terminals B8 and B9 (Program Stop and Coast Stop):

• Apply the "Start/Run" command to C3

The main 3-phase contactor should pull-in and remain energised, (it may de-energise almost immediately due to the 3-phase fail alarm).

• Remove the "Start/Run" command from C3

The main 3-phase contactor should drop-out and remain de-energised.

If the above sequence does not function, remove the auxiliary power and check start/stop sequencing and contactor wiring.

If the contactor is left energised for an extended time during this check, the controller will detect that 3-phase is not connected and switch off the contactor, flagging the 3-phase alarm.

IMPORTANT

The main contactor should never be operated by any means other than the drive internal controls, nor should any additional circuitry be placed around the contactor coil circuit.

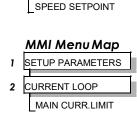
WARNING

Do not continue until the stop/start circuits and contactor operate correctly.

Step 6: Power-down the drive and connect the 3-phase supply; power-up the Drive

Switch off all power supplies to the equipment and, when the whole system is totally isolated and safe, re-connect the main 3-phase power supply.

- Switch on the auxiliary supply.
- Switch on the main 3-phase supply.


MAIN & AUXILIARY POWER ARE CONNECTED AT THIS STAGE

Step 7: Set the Speed Setpoint(s) to 5%

Set the Speed Setpoint(s) to 5% so that the value of the SPEED SETPOINT parameter is 5.0%. This is also output at Terminal A8.

Step 8: Check the MAIN CURR LIMIT is zero

Double-check that the MAIN CURR. LIMIT is set to 0.00%.

MMI Menu Map

DIAGNOSTICS

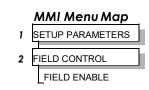
Step 9: Start the Drive and check the field voltage

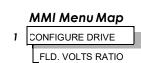
Apply the Start/Run command and check that 3-phase mains is applied to Power Terminals L1, L2 and L3.

Apply 24V to "Enable" (C5) and immediately check that the correct field voltage appears between the auxiliary supply terminals F+ and F-. (Note that any external interlocks which affect the Enable input C5 will affect the operation of the drive.)

Caution

This is high voltage DC, proceed with caution. Do not continue if this is incorrect, switch off all supplies and check connections.

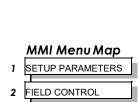

Refer to 9.1 or 9.2 on the next page.


If the field voltage is incorrect, make the following checks:

Step 9.1 Internally Supplied Field:

- Check that 3-phase is applied to terminals L1, L2 and L3 when the main contactor is closed.
- Check that the coding fuses on the power board or suppression board are healthy.
- The FIELD ENABLE parameter should be set to ENABLE.
- With the FIELD ENABLE parameter in view, press the ↓ (DOWN) key. The display changes to FLD CTRL MODE. Press the **M** key. Is this set to VOLTAGE CONTROL or CURRENT CONTROL?
 - ➤ If set to VOLTAGE CONTROL, check the value of the FLD. VOLTS RATIO parameter. Set this to 65% to obtain 300V fields from 460V supplies.
 - > If set to CURRENT CONTROL, check the field current calibration set-up, refer back to "Calibration".

If the field volts are at maximum, check the field continuity. (The field current may initially be lower than the rated value due to a cold field.)


2

Step 9.2 Externally Supplied Field: (not available on Frame 1 units)

Refer to Chapter 3: "Installing the Drive" - Motor Field Options for conversion details.

- Check the voltage applied (externally fused) to terminals FL1 and FL2.
- Check the phasing of voltage applied to FL1 and FL2:
 - > FL1 must be connected directly or indirectly to the Red phase on main power terminal L1.
 - > FL2 must be connected directly or indirectly to the Yellow phase on main power terminal L2.
- The FIELD ENABLE should be set to ENABLE.
- With the FIELD ENABLE parameter in view, press the ↓ (DOWN) key. The display changes to FLD CTRL MODE. Press the M key. Is this set to VOLTAGE CONTROL or CURRENT CONTROL?
 - ➤ If set to VOLTAGE CONTROL, check the value of the FLD. VOLTS RATIO parameter. Set this to 65% to obtain 300V fields from 460V supplies.
 - > If set to CURRENT CONTROL, check the field current calibration set-up, refer back to "Calibration".

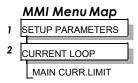
Check that 3-phase is applied to terminals L1, L2 and L3.

3 FLD VOLTAGE VARS

FLD. VOLTS RATIO

MMI Menu Map
SETUP PARAMETERS

FIELD CONTROL


FIELD ENABLE

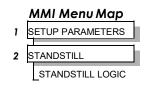
Step 10: Check the Keypad

Check that the HEALTH and RUN Keypad LEDs are now illuminated, also either the FWD or REV LED.

Step 11: Check the STANDSTILL LOGIC parameter

If the STANDSTILL LOGIC parameter in the STANDSTILL menu at level 2 is ENABLED, temporarily set it to DISABLED.

Caution


During the following set-up instructions, be ready to STOP the drive should the motor try to overspeed.

If 5% speed (approximately) is exceeded and the motor continues to accelerate a reversed connection is implied, decrease the MAIN CURR.LIMIT parameter to zero. Open the main contactor and disconnect all supplies. Reverse the motor connections.

Step 12: Turn the motor and check direction of rotation

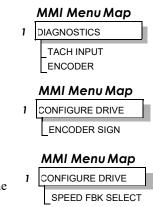
Slowly increase the MAIN CURR.LIMIT parameter towards a maximum of 20%. At some point the motor will begin to rotate as the parameter value is increased. The motor speed will settle at 5% of full speed. If the motor is loaded it may require more than 20% current limit to turn the motor.

- If the motor does not turn at all when the MAIN CURR.LIMIT is increased to 20%, check the CURRENT FEEDBACK parameter to verify that current is flowing into the armature. If no current is flowing, switch off and check the armature connections.
 - > Is the motor connected to the drive?
 - > Verify that Calibration has been carried out correctly.

Check the direction of rotation is suitable for your process:

- If the direction of rotation is correct, then the armature and field are wired correctly.
- If direction of rotation is incorrect then open the main contactor and disconnect all supplies. Reverse either the armature or field wiring.

WARNING


Do not continue until Step 12 is completed satisfactorily.

Step 13: Check the Speed Feedback sign

With the motor rotating in the correct direction, check the sign of the feedback from the Tachometer or Encoder using the appropriate Diagnostic menu: TACH INPUT or ENCODER.

- If the diagnostic value is positive (correct), stop the drive. Re-instate your selection for the SPEED FBK SELECT parameter (if other than ARM VOLTS FBK) and run the drive to check operation. If the test is successful go to Step 14.
- If the diagnostic value is negative:
 - > Analog Tach: reverse the connections of the analog tach on terminals G3 and G4
 - ➤ Encoder: change the sign of the encoder feedback parameter.

Re-instate your selection for the SPEED FBK SELECT parameter (if other than ARM VOLTS FBK) and run the drive to check operation.

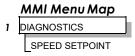
MMI Menu Map

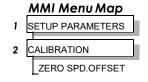
PARAMETER SAVE

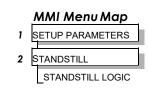
PARAMETER SAVE

When satisfactory operation has been achieved, perform a PARAMETER SAVE. Refer to Chapter 6: "The Keypad" - Saving Your Application.

Step 14: Adjusting the Speed Setpoint


With the MAIN CURR.LIMIT parameter set to 20% or to the level required to achieve rotation, set the Speed Setpoints so that the value of the SPEED SETPOINT is about 10%, 1.0V at setpoint input (Terminal A8). The motor will accelerate to this speed setting.

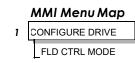

Step 14.1 4 Quadrant Drives which require reverse rotation:


Alter the Speed Setpoints so that the value of the SPEED SETPOINT parameter is about -10% and check that motor runs in the reverse direction.

Step 14.2 Adjustment of ZERO SPEED OFFSET parameter (Ensure STANDSTILL is DISABLED as in Step 11):

- 4 Quadrant, non-reversing drives
 Set the Speed Setpoint potentiometer to zero and adjust the ZERO SPEED OFFSET parameter for minimum shaft rotation.
- 2 Quadrant, non-reversing drives
 Set the Speed Setpoint potentiometer to zero and adjust the ZERO SPEED OFFSET parameter until the shaft is just rotating then reduce level until the shaft stops.
- 4 Quadrant, reversing drives
 Set the ZERO SPEED OFFSET parameter to balance maximum speed in forward and reverse directions. You can also set STANDSTILL LOGIC parameter to ENABLE if a stationary shaft is required.

Step 15: Fine adjustments for Speed Feedback


Gradually increase the Speed Setpoints so that the value of the SPEED SETPOINT (DIAGNOSTIC menu) is at maximum. Check the shaft speed is correct.

If fine adjustment is required adjust the calibration as appropriate to the speed feedback selection:

- Armature Voltage feedback has a +2/-10% trim, greater changes outside this range require re-setting of the calibration switches.
- Analog Tachogenerator has a +2/-10% trim, greater changes outside this range require re-setting of the calibration switches.
- The Encoder should give an absolute rotational speed for which adjustment is unnecessary however the motor speed may not be the relevant factor thus speed of rotation can be altered by simply adjusting the calibration.

Step 16: Adjustment for Field Weakening

If the drive is to be run with a top speed greater than the base speed then 'field weakening' is used to achieve that top speed. (Refer to Chapter 5: "Control Loops" - Field Control for a more detailed explanation).

MMI Menu Map

SETUP PARAMETERS

ARMATURE V CAL.

_ANALOG TACH CAL. ENCODER RPM

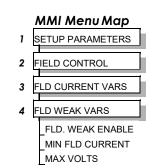
CALIBRATION

NOTE The drive must be operating in Field Current Control. Select CURRENT CONTROL on the FLD CTRL MODE parameter. Also, field weakening cannot be used if you have Armature Voltage feedback selected.

IR COMPENSATION (CALIBRATION function block) is also used in field weakening applications to improve dynamic response and speed holding stability.

To set up IR COMPENSATION:

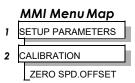
Set FIELD ENABLE to DISABLED (FIELD CONTROL function block). Start the drive with a 5% speed demand and ensure the ACTUAL POS I LIMIT is 100% (diagnostic). This should stall the drive at zero speed and cause it to pass 100% current. Monitor the BACK EMF diagnostic and note the value (typically anything up to 17% is normal). Stop the drive and enter this value into IR COMPENSATION and repeat the test to ensure that BACK EMF then reads zero.


Run the drive up to base speed and check the motor volts are correct.

In the FLD WEAK VARS menu, verify that field weakening is selected (FIELD WEAK ENABLE) and that the MINFLD CURRENT parameter is set appropriately. Adjust the maximum BEMF volts to the required scaled level by setting the MAX VOLTS parameter.

Increase the speed above the base speed, checking that the armature volts remain constant whilst the field current reduces.

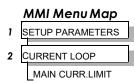
Gradually increase to maximum speed. Monitor the armature volts at maximum speed and trim the speed using the appropriate control as detailed in Step 15. PROCEED WITH CARE - MAKE SMALL ADJUSTMENTS.


Trim the MIN FLD CURRENT parameter to the appropriate setting (5% lower than the field current at full speed).

Step17: Adjustment for Reversing Drives

For reversing drives, check the maximum reverse speed.

Imbalance in reversing drives can only be corrected by adjusting the ZERO SPD OFFSET parameter, which may be to the detriment of operation at Zero Setpoint.



Step 18: Re-setting the MAIN CURR. LIMIT parameter

Re-set the MAIN CURR. LIMIT parameter to the original setting that you previously noted in Step 4. If in doubt, set it to 100% to correspond to 100% full load current (FLC).

NOTE

The controller cannot achieve 200% current unless the CUR. LIMIT/SCALER parameter is increased to 200% (from its default setting of 100%). Until this is done, the External Current Clamp will limit the current to 100%, refer to Appendix D: "Programming" - CURRENTLOOP.

- If the current limit is set higher (maximum 200%) and the motor runs into an overload condition, the current is automatically reduced from the current limit level down to 103% FLC (continual rating).
- If the motor is overloaded, the controller will reduce the current to 103% of the current calibration. (If the motor continues to rotate it may overheat and thermal protection should be provided).
- If the motor is overloaded and the current provided by the controller is not enough to maintain rotation, i.e. it stalls, the controller will trip out showing STALL TRIP alarm, if enabled.

Performance Adjustment

Current Loop - The ARMATURE Autotune Feature

Now perform an Autotune to identify and store the following Current Loop parameters:

PROP. GAIN INT. GAIN DISCONTINUOUS

Initial Conditions

- 1. Main contactor open, i.e. no Start/Run signal at terminal C3.
- 2. Set the AUTOTUNE parameter to OFF.
- 3. Program Stop (terminal B8) and Coast Stop (terminal B9) should be high, i.e. 24V.
- 4. If the field is being supplied by a third-party controller, remove the field manually. (If the field is internally regulated, Autotune automatically quenches the field).

IMPORTANT

The shaft may require clamping for certain motors to prevent rotation >20% during the Autotune sequence. If the motor is either a compound motor (series field), has some residual magnetism, or is a permanent magnet motor it WILL rotate and the shaft must be clamped. If in any doubt, CLAMP OR BE READY TO STOP THE MOTOR.

Performing an Autotune

- Set the AUTOTUNE parameter to ARMATURE.
- Close the main contactor, i.e. Start/Run signal to terminal C3.
- Energise the Enable terminal (C5).

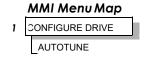
The Autotune sequence is initiated. The Keypad displays "AUTOTUNING" during the process (also the HEALTH led is lit and the RUN led flashes). When complete (after approximately 10 seconds), the main contactor is opened automatically signalling the end of the sequence and the AUTOTUNE parameter is reset to OFF.

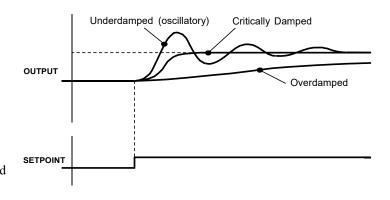
- Perform a PARAMETER SAVE now. Refer to Chapter 6: "The Keypad Saving Your Application.
- If necessary, restore field connections and remove the mechanical clamp.

Autotune Failed?

- The Keypad displays the message AUTOTUNE ABORTED
 If any one of the Initial Conditions above are removed, or the Autotune sequence times out (after 2 minutes), then the Autotune sequence is aborted causing the main contactor to drop out.
- The Keypad displays the message AUTOTUNE ERROR
 - ➤ The motor shaft was rotating, or was caused to rotate.
 - > The field current was seen to exceed 6%, when a field-off Autotune had been selected, or the field current stopped during a field-on Autotune.
 - ➤ The drive to armature wiring was open-circuit.
 - > The discontinuous current boundary was found to exceed 200% of either the stack rating or the nominated motor armature current rating
 - ➤ Large imbalance in the three-phase voltages of the supply.
 - > A hardware fault relating to current feedback was detected on the control board.

NOTE Refer to Chapter 5: "Control Loops" - Current Control for manual tuning instructions.


Speed Loop Adjustment


You will need to adjust the Speed Loop for your particular application although in most cases the default settings are acceptable. The optimum Speed Loop performance is achieved by adjusting the PROP. GAIN and INT. TIME CONST. parameters.

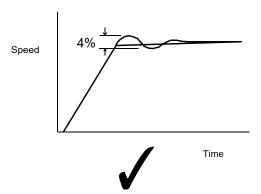
A PI controller is used to control the response of any closed loop system. It is used specifically in system applications involving the control of drives to provide zero steady state error between Setpoint and Feedback, together with good transient performance.

Proportional Gain (PROP. GAIN)

This is used to adjust the basic response of the closed loop control system. The speed error is multiplied by the Proportional Gain to produce a motor current demand.

Integral (INT.TIME CONST.)

The Integral term is used to reduce steady state error between the setpoint and feedback values of the controller by accumulating current demand in proportion to the error input. If the integral is set to zero, then there will always be a steady state error.


A Method for Setting-up the PI Gains

The gains should be set-up so that a critically damped response is achieved for a step change in setpoint. An underdamped or oscillatory system can be thought of as having too much gain, and an overdamped system has too little.

To set up the P gain, set the I gain to zero. Apply a step change in setpoint that is typical for the System, and observe the speed feedback response on terminal A7. Increase the gain and repeat the test until the system becomes oscillatory. At this point, reduce the P gain until the oscillations disappear. This is the maximum value of P gain achievable.

If the steady state error is significant, i.e. the feedback is not sufficiently close to the setpoint value, the I term needs to be used. As before, increase the I gain and apply the step change. Monitor the output. If the output becomes oscillatory, reduce the P gain slightly. This should reduce the steady state error. Increasing the I gain further may reduce the time to achieve zero steady state error.

Correct Response

Critically Damped Response with no more than 4% of maximum speed from first overshoot to first undershoot

Starting and Stopping Methods

Stopping Methods

- If the Drive is "non-regenerative" (2-quad 901P) it effectively coasts to a stop once the current demand reverses.
- If the Drive is "regenerative" (4-quad 900P) then it can stop faster because it uses energy from the load, i.e. reverse current is allowed to flow.

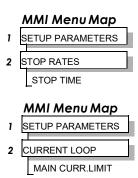
Normal Stop and Program Stop are only relevant for a "regenerative" controller.

The parameters STOP TIME and PROG STOP TIME have associated timers which initiate a Coast Stop after the timed period.

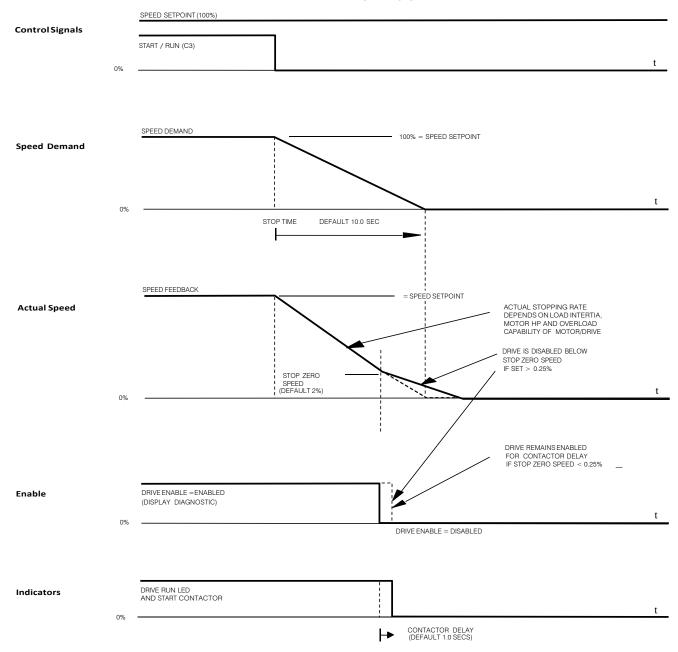
The Coast Stop has direct control of the Run relay with no intervening electronics.

All associated parameters can be found in the STOP RATES menu.

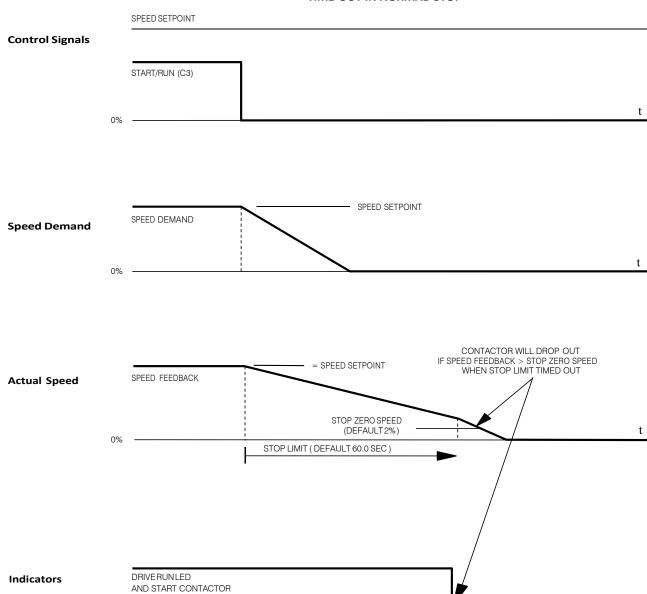
	MMI Menu Map			
1	SETUP PARAMETERS			
2	STOP RATES			


Terminal	Description	Function	Parameter	Priority
B9	Coast Stop	Motor coasts to rest		Overrides Program Stop and Normal Stop
B8	Program Stop	Motor decelerates at Program Stop rate	PROG STOPTIME	Overrides Normal Stop
	Start/Run (Normal Stop)	Motor decelerates at Normal Stop rate	STOPTIME	

Normal Stop (C3)

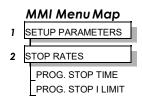

This is achieved by removing 24V from Terminal C3.

The motor speed is brought to zero in a time defined by the STOP TIME parameter.

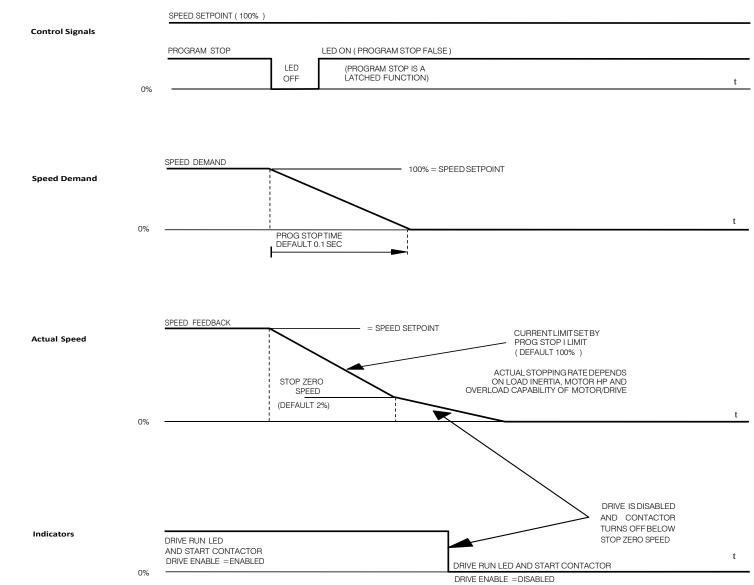

During Normal Stop, the current is limited by the MAIN CURR. LIMIT parameter

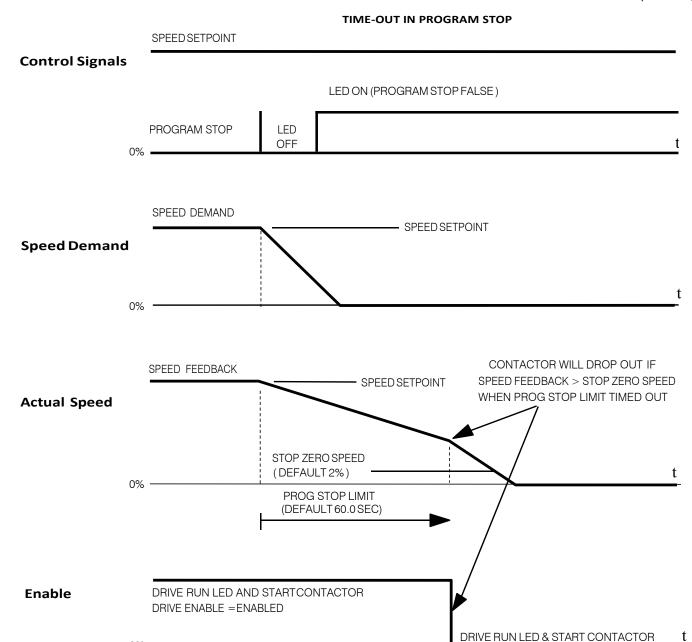
TIME-OUT IN NORMAL STOP

DRIVE RUN LED & START CONTACTOR


DRIVE ENABLE = DISABLED

DRIVE ENABLE = ENABLED


Program Stop (B8)


This is achieved by removing 24V from Terminal B8.

The motor speed is brought to zero under conditions defined by the PROG. STOP TIME (ramp rate) and PROG. STOP I LIMIT parameters.

PROGRAM STOP TIMING

DRIVE ENABLE = DISABLED

Coast Stop (B9)

This is achieved by removing 24V from Terminal B9.

The stack is automatically quenched and the contactor is opened. The motor coasts to a stop.

NOTE The motor coast stop rate is dictated by the motor inertia - the drive does not control the motion.

Standstill

Refer to Appendix D: "Programming" - STANDSTILL.

The Trip Condition

When a trip condition is detected, a similar stopping method to Coast Stop is used. The power stack cannot be re-enabled until the trip condition has been cleared and successfully reset.

Refer to Chapter 7: "Trips and Fault Finding" for further details.

Normal Starting Method

To achieve a normal start of the Drive:

- 1. Apply 24V to Terminal C5 (Enable)
- 2. Apply 24V to Terminal C3 (Start)

NOTE The Drive will not start if there are alarms present, or if Terminals B8 (Program Stop) or B9 (Coast Stop) are low, 0V.

Ensure that Program Stop and Coast Stop are valid before Start/Run is applied.

MMI Menu Map 1 SETUP PARAMETERS 2 STANDSTILL STANDSTILL LOGIC ZERO THRESHOLD

Advanced Starting Methods

Starting Several Drives Simultaneously

- 1. Apply 24V to Terminal C3 (Start)
- 2. Use Terminal C5 (Enable) to synchronise the start-up of the Drives

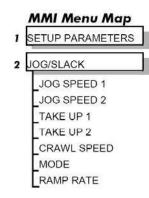
Jog

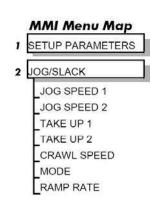
NOTE The Drive will not start if there are alarms present.

This facility provides two dedicated jog setpoints (or perhaps an Inch Forward/Inch Reverse). Activating Jog runs the motor at speeds set by JOG SPEED 1 or JOG SPEED 2. The JOG/SLACK::MODE parameter selects JOG SPEED 1 or 2.

- 1. Apply 24V to Terminal C5 (Enable)
- 2. Apply 24V to Terminal C4 (Jog Mode)

Refer to Appendix D: "Programming" - JOG/SLACK for further information. Also refer to the STOP RATES function block: the CONTACTOR DELAY parameter is used to prevent multiple operations of the main contactor from rapid use of the Jog switch.


Crawl


NOTE The Drive will not start if there are alarms present.

This facility provides a dedicated crawl setpoint. Activating Crawl runs the motor at the speed set by CRAWL SPEED.

- 1. Apply 24V to Terminal C5 (Enable)
- 2. Set JOG/SLACK::MODE parameter (Tag No. 228) to TRUE.
- 3. Apply 24V to Terminal C3 (Start) and Terminal C4 (Jog Mode) simultaneously to start the Drive using the crawl speed, in Forward or Reverse.

When selecting CRAWL, apply Start (C3) and Jog (C4) simultaneously, otherwise you may experience Modes 3 or 6 momentarily. Refer to Appendix D: "Programming" - JOG/SLACK for further information (see the Setpoint Selection Table).

Take Up Slack

NOTE The Drive will not start if there are alarms present.

This facility provides two additional Take Up Slack setpoints. Activating Take Up Slack runs the motor at the speed set by "speed setpoint + TAKE UP1" or "speed setpoint + TAKE UP 2".

TAKE UP SLACK 1:

- 1. Apply 24V to Terminal C5 (Enable).
- 2. Apply 24V to Terminal C3 (Start) to accelerate to set speed.
- 3. Set JOG/SLACK::MODE parameter (Tag No. 228) to FALSE.
- 4. Apply 24V to Terminal C4 (Jog Mode) to run the motor at "speed setpoint + TAKE UP 1".
- 5. Remove 24V from Terminal C4 (Jog Mode) to run the motor at speed setpoint.

TAKE UP SLACK 2:

- 6. Apply 24V to Terminal C5 (Enable).
- 7. Apply 24V to Terminal C3 (Start) to accelerate to set speed.
- 8. Set JOG/SLACK::MODE parameter (Tag No. 228) to TRUE to run the motor at "speed setpoint + TAKE UP 2".
- 9. Set JOG/SLACK::MODE parameter (Tag No. 228) to FALSE to run the motor at speed setpoint.

Refer to Appendix D: "Programming" - JOG/SLACK for further information (see the Setpoint Selection Table).

MMI Menu Map 1 SETUP PARAMETERS 2 JOG/SLACK JOG SPEED 1 JOG SPEED 2 TAKE UP 1 TAKE UP 2 CRAWL SPEED MODE RAMP RATE

External Control of the Drive

Remote Sequencing Command

REM. SEQUENCE: Tag 536, Mnemonic "ow", Default = 0x0000 ("0x" denotes a Hexadecimal value)

This is a control word that allows the device to be operated remotely over a field bus. REM. SEQ. ENABLE must be TRUE to enable this function.

NOTE Refer to the RS485 Communications Interface Technical Manual.

Reserved bits are undefined when read and should be set Zero when written.

Bit Number	Mask	Name	Comment
0 (lsb)	0x0001	Remote Enable	
1	0x0002	Remote Start	
2	0x0004	Remote Jog	
3	0x0008	Remote JogMode	Selects Jog Speed
4	0x0010	Reserved	
5	0x0020	Reserved	
6	0x0040	Reserved	
7	0x0080	Reserved	
8	0x0100	Remote Alarm Ack	Alarm Acknowledge
9	0x0200	Remote/Remote Trip	Remote Trip (High for OK)
10	0x0400	Reserved	
11	0x0800	Reserved	
12	0x1000	Reserved	
13	0x2000	Reserved	
14 (msb)	0x4000	Reserved	
15 (msb)	0x8000	Validation	This bit must be zero for the command word to be accepted

4-28 Operating the Drive

Useful Commands using El Bisynch ASCII - REM. SEQUENCE

Tag 536, Mnemonic "ow", for example:

	/Remote Trip	Alarm Ack	Jog Mode	Jog	Start	Enable	Command
Start Drive	1	0	Χ	0	1	1	ow>0203
Stop Drive	1	0	Х	0	0	1	ow>0201
Disable Drive	1	0	Х	Х	Χ	0	ow>0200
Jog Setpoint 1	1	0	0	1	0	1	ow>0205
Jog Setpoint 2	1	0	1	1	0	1	ow>020D
Remote Trip	0	0	X	Х	Χ	X	ow>0000
Reset Alarm a)	1	1	0	0	0	0	ow>0300
							Healthy Output Bit 11 goes high
Reset Alarm b)	1	0	Х	0	0	0	ow>0200

Sequence Status

SEQ STATUS: Tag 537, Mnemonic "ox" (Read Only)
Reserved bits are undefined when read.

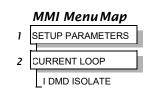
Bit Number	Mask	Name	Comment
0 (lsb)	0x0001	Coast Stop	Coast Stop demanded
1	0x0002	Program Stop	Program (Fast) Stopdemanded
2	0x0004	Disable	/Enable demanded
3	0x0008	Run	Drive Start demanded
4	0x0010	Jog	Drive Jog demanded
5	0x0020	Reserved	Undefined
6	0x0040	Alarm	Unacknowledged alarm
			(Health Store != 0)
7	0x0080	Reserved	Undefined
8	0x0100	Running	Contactor in and drive ready to be enabled
9	0x0200	Enabled	Drive is enabled
10	0x0400	Zero Speed	Zero speed Output TAG 17
11	0x0800	Healthy Output	Healthy Output TAG 12
12	0x1000	Ready	Ready Output TAG 559
13	0x2000	Reserved	Undefined
14	0x4000	Reserved	Undefined
15 (msb)	0x8000	Reserved	Undefined

Typical Bit Patterns reported via SEQ STATUS

Tag 537, Mnemonic "ox" (Read Only) - for example:

Sequence Status	Comment
0x1B0B	Running
0x044B	Tripped, Run High
0x0447	Tripped, Run Low, Enable Low
0x0C47	Trip Acknowledged, Healthy output TRUE Alarm stays high until drive is restarted.

Chapter 5 Control Loops


This chapter explains the principle of operation, and provides help on setting up the control loops correctly.

Contro	I Loops - Principle of Operation	5-1
•	Current Loop	5-1
•	Speed Loop	5-4
•	Field Control	5-5

Control Loops - Principle of Operation

NOTE

Selection between Current Control or Speed Control (default) is made by the I DMD ISOLATE (current demand isolate) parameter using Digital I/P3 (Terminal C8). If ENABLED the Drive operates as a current controller, and if DISABLED (the default) it operates as a speed controller.

Current Loop

The current loop accepts a demand from either the speed loop, or directly from the plant, and forms an error signal which is the difference between demand and average value of feedback. The error signal is fed into a Proportional + Integral compensator which produces the output of the current loop, i.e. the firing angle signal.

In the Drive, the error signal is created in two different forms:

- 1. The *average* error is computed as the difference between demand and average value of feedback and fed into the Integral part of the P + I algorithm.
- 2. The *instantaneous* error is computed as the difference between demand and instantaneous value of feedback and is fed into the Proportional part of the P + I algorithm. This gives higher transient performance since it does not contain any time lag, unlike the average which has a built-in lag of 1/6 of mains cycle. However, the average is the true measurement of torque which is the objective of the current control and this is not affected by the small time lag in achieving zero steady-state error.

The firing angle signal is translated into a certain time delay from the mains zero cross point (obtained via a Phase-Lock-Loop) and this results in a firing command being issued to the thyristor stack every 1/6 of a mains cycle in steady-state.

Some special features of the current controller are discussed separately below.

Adaptive Current Control

The gain of a thyristor 6-pulse converter (voltage-time area over firing angle) drops dramatically at discontinuous values of armature current. Therefore a gain boost is required in the current controller to compensate for that.

In the Drive, this is handled by an adaptive algorithm which allows the current to follow the demand in one step (firing) within the discontinuous region of operation.

Back EMF (BEMF) Estimate

With the motor at standstill, the firing angle for zero current is 120 degrees. When the motor is rotating at different speeds the firing angle for zero current follows a cosine locus.

It is of paramount importance to track this locus as close as possible throughout the speed range if the current loop bandwidth is to be maintained at its highest possible level during current reversals from master to slave bridge and visa-versa.

There are two reasons for the loss of bandwidth at current reversals:

5-2 Control Loops

- 1. The loss of converter gain needs to be compensated in an accurate way which is the objective of the adaptive algorithm.
- 2. The above algorithm also relies on the right start-up value of firing angle in the incoming bridge in order to minimise both the "dead-time" (time interval of zero current referred to below) as well as the rise time to the required current demand.

In order to get the right start-up value of firing angle the knowledge of the operating BEMF is necessary. In the Drive, this is achieved by a combination of a hardware peak current detector and appropriate software algorithm.

Bridge Changeover Delay

The bridge changeover "dead-time", i.e. time interval of zero current, is programmable from 1 to 1500 (via Reserved Menu) with a default value of 1.

For values from 1 to 6:

The delay can be set at multiples of 1/6 mains period, i.e. max. 6 x 3.33 = 20ms at 50Hz. This is relevant for use with large power converters where it is advisable to allow more time for snubber currents to subside before reversal is enabled. It is also relevant for motors with very large armature inductance where zero current detection is more sensitive and therefore a "factor of safety" in the bridge changeover delay is advisable.

For values from 7 to 1500:

The delay corresponds to $7 \times 1.33 \mu s$ up to $1500 \times 1.33 \mu s = 2 ms$ maximum.

Manual Tuning

NOTE This procedure is rarely used or required, if possible use Autotune.

If the motor is permanent magnet or (very rarely) wound-field of relatively high permanent magnetism, and the drive is a 4Q drive, then clamp the shaft prior to using the 4Q Autotune process (default). This mode of Autotune produces current pulses on alternate thyristor bridges, and thus the net rotational torque is very low.

There are two circumstances where a manual tuning process would be required:

- 1. The motor is permanent magnet or (very rarely) wound-field of relatively high permanent magnetism, and the drive is a 2Q drive.
- 2. The Autotune process has failed with AUTOTUNE ERROR message. The possible causes of an Autotune error are:
 - The motor shaft was rotating, or was caused to rotate.
 - The field current was seen to exceed 6%, when a field-off Autotune had been selected, or the field current stopped during a field-on Autotune.
 - The drive to armature wiring was open-circuit.
 - The discontinuous current boundary was found to exceed 200% of either the stack rating or the nominated motor armature current rating (see A below).
 - Large imbalance in the three-phase voltages of the supply (see **B** below).
 - A hardware fault relating to current feedback was detected on the control board.

If the cause of the Autotune failure can be determined and rectified then do so and simply repeat the Autotune process.

MMI Menu Map

SETUP PARAMETERS

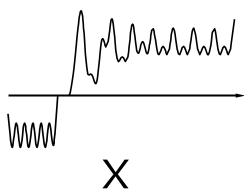
2 CURRENT LOOP

MAIN CURR.LIMIT
PROP. GAIN
INT. GAIN
DISCONTINUOUS
I DMD. ISOLATE

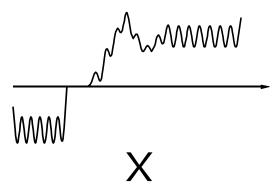
MMI Menu Map

SETUP PARAMETERS

FIELD CONTROL


FIELD ENABLE

MMI Menu Map


DIAGNOSTICS

CURRENT FEEDBACK


- **A.** If a very high motor discontinuous current boundary was the cause of failure, then the discontinuous-region manual tuning process needs to be applied as follows:
 - 1. Set the DISCONTINUOUS parameter to 0, which selects adaptive current control off. When operating in this mode, disable the Missing Pulse alarm, since it is normally masked in the discontinuous region, and it will otherwise give spurious trips at low currents.
 - 2. Set PROP. GAIN to a low level (typically 1), since it is ineffectual in the discontinuous current operating region.
 - 3. Set the INT. GAIN to a moderate level (typically 10), sufficient to give fast response throughout the discontinuous current region.
- **B.** If imbalance in the three-phase voltages of the supply is the cause of failure then the PI-control manual tuning process needs to be applied as follows:
 - 1. Set FIELD ENABLE to Disabled and clamp the motor shaft, to prevent rotation.
 - 2. Attach an oscilloscope to the control board armature current monitor test-point (test point IA [see page 5-5], scaled for 1.1V = 100% rated armature current, +ve = reverse bridge, -ve = forward bridge). The scaled armature current value can also be seen in the CURRENT FEEDBACK diagnostic.
 - 3. Run the drive with a positive speed demand, gradually increasing MAIN CURR. LIMIT until the armature current pulses are seen to just join up. At this point, enter the value of CURRENT FEEDBACK into the DISCONTINUOUS parameter.
 - 4. Enable the I DMD. ISOLATE parameter (or supply 24V to terminal C8). Use a toggling square-wave (< 20Hz) on the direct demand input (terminal A3) to generate current steps above the discontinuous region. Alternately increase PROP. GAIN and INT. GAIN, as far as possible, until the current loop response is correct (see Tuning Hints below).

Current Loop controls incorrectly set. Rapid alternating oscillation = P gain too high

Current Loop controls incorrectly set. Slower oscillatory response = I gain too high

Current Loop controls correctly set.

5-4 Control Loops

Tuning Hints

If the P gain (PROP.GAIN) is too high then the response will exhibit a rapid oscillation, that alternates on consecutive current pulses.

If the I gain (INT. GAIN) is too high then the result will be a slower oscillatory response (under-damped), with a period of multiple pulses.

If the I gain (INT. GAIN) is too low then the response will exhibit a long settling tail.

Diagnostics

The diagnostic point for "real" armature current is the first (left-hand side) test point below the calibration panel. This will give 1.1V average for 100% current. It will also give the operating bridge, i.e. it will be negative for the Master bridge (positive current demand) and positive for the Slave bridge (negative current demand).

Current Demand Rate Limit (di/dt)

Access to the di/dt limit is currently reserved for Drives personnel only in the Reserved Menu.

This is a limit imposed on the rate of change of the current demand. It is to be used for motors with commutation limitations, mechanical systems that cannot absorb rapid torque transients and also as a means of limiting current overshoot for large current swings (e.g. 0 à 200%). The default value is set at 35% (i.e. maximum allowable change is 35% of FLC in 1/6 mains cycle) which has no practical effect on the current response between 0 and 100%.

Speed Loop

The speed loop accepts a demand from either an outside loop (i.e. position loop) or directly from the plant and forms the error signal which is the difference between demand and feedback. The error signal is fed into a Proportional + Integral compensator which produces the output of the speed loop, i.e. the current demand signal.

The integral gain is translated into a Time Constant (secs) in the MMI which defines more clearly the function of the compensator against a certain load time constant.

Speed Loop Synchronised with Current Loop

The proportional part of the P+I algorithm is executed immediately before each run of the current loop, thus ensuring minimum time lag and therefore maximum bandwidth.

Combined Analog Tacho/Encoder Feedback

By using the analog tacho feedback on the Proportional part of the P + I algorithm and the encoder feedback on the Integral part (using similar principle as in the current loop), the Drive combines maximum transient response with the increased steady-state accuracy of the digital feedback.

Field Control

Set-Up Notes

Use the field AUTOTUNE facility to tune the field current controlloop.

Initial Conditions

- 1. Main contactor open, i.e. no Start/Run signal at terminal C3.
- 2. Set the AUTOTUNE parameter to OFF.
- 3. Program Stop (terminal B8) and Coast Stop (terminal B9) should be high, i.e. 24V.
- 4. The motor should be stationary.

Caution

Never perform a field autotune if the motor is turning above base speed, since this will generate armature voltages that can overvoltage the armature circuit.

Performing an Autotune

- 1. Set the AUTOTUNE parameter to FIELD.
- 2. Close the main contactor, i.e. Start/run signal to terminal C3.
- 3. Energise the Enable terminal (C5).

The Autotune sequence is initiated. When complete (after approximately 5 seconds), the main contactor is opened signalling the end of the sequence and the AUTOTUNE parameter is reset to OFF.

4. Perform a PARAMETER SAVE now. Refer to Chapter 6: "The Keypad - Saving Your Application".

MMI Menu Map

SETUP PARAMETERS

FIELD CONTROL

FLD.CURRENT VARS

SETPOINT PROP. GAIN INT. GAIN

>> LFLD.WEAK VARS

Autotune Failed?

The AUTOTUNE ERROR message may result if:

- > The field terminals are open-circuit or short-circuit.
- ➤ More than 180% or less than 20% field voltage is required to drive the current configured in the FIELD CURRENT parameter.
- ➤ The natural field time-constant is greater than 5 seconds.

In these cases, a manual tuning process will be required, much like the manual tuning of the armature current loop. With manual tuning, one convenient method of producing field current demand steps is to set the field demand (SETPOINT) to 50% and then use the drive enable to move to and from the 'quench' and 'standby' modes to create transients. Monitor the field current at control board test-point IF, scaled 4V = 100% rated field current.

5-6 Control Loops

Current Control

The field current loop can accept a demand directly from the plant and/or an outside field weakening loop and forms the error signal which is the difference between demand and feedback. The error signal is fed into a P + I compensator which produces the output of the field loop, i.e. the field firing angle signal.

The firing angle signal is translated into a certain time delay from the mains zero cross point (obtained via the same Phase-Lock-Loop as for the armature) and this results into a firing command being issued to the field bridge every 1/2 of a mains cycle in steady-state.

Voltage Control

This offers the facility of an open-loop voltage control for motors which do not provide in the nameplate the field current rating. The field voltage is controlled by the specified FLD. VOLTS RATIO which defaults to 90.0%. This is the maximum dc Volts that can be obtained for a given ac RMS input in a single-phase rectifier, i.e. 370V dc for 415V ac supply. The specified ratio determines directly the firing angle at which the controller operates and therefore the thermal effects on the field resistance as well as mains voltage variations are not compensated for. It is also worth noting that in this mode the field overcurrent alarm is not active (since there is no current scaling) and therefore this mode is not recommended for use with supplies much greater than the field voltage rating.

Field Weakening

Motor field weakening is used to extend the speed region of the motor above its base speed (the motor speed resulting at rated armature voltage, rated armature current and rated field current), in a constant power mode of operation (motor torque reducing with increasing speed).

Note that the motor should be rated for field-weakened operation, in terms of rotational speed and reduced field current, before utilising this mode.

The drive includes a field weakening loop that, above base speed, can control the field current demand to the correct level required to maintain motor back-EMF at a pre-defined level.

NOTE Field weakening is not possible when running with Armature Volts feedback. Although field weakening can be "Enabled" in this instance, a software interlock clamps the field demand at 100% and will not allow the field weakening to reduce it.

When the back-EMF measurement is higher than the MAX VOLTS setting (default 100%) the excess voltage is presented to the field weakening gain-limited PI controller as an error, and this controller reduces the field current demand accordingly.

The gain-limited controller is tuned as follows:

- 1. Ensure that the armature current, speed and field current loops are correctly tuned.
- 2. Enable field weakening control (FLD. WEAK ENABLE = ENABLE), with analogue tachogenerator, encoder speed feedback, correctly installed and configured for extended speed operation.
- 3. Run the drive and slowly increase the speed demand so that the field is being weakened by the gain-limited PI controller. Change the MAX VOLTS parameter down and up by 10% to generate field current transients.
- 4. Alternately increase the P gain (using the dc-gain parameter EMF GAIN) and reduce the integral time-constant (parameter EMF LEAD) until the loop is correctly tuned (see the Current Loop "Tuning Hints" above).

MMI Menu Map

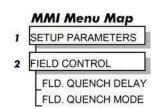
- 1 SETUP PARAMETERS
- 2 FIELD CONTROL
- 3 FLD.CURRENT VARS
- 4 FLD.WEAK VARS

FLD. WEAK ENABLE
EMF LEAD
EMF LAG
EMF GAIN
MIN FLD.CURRENT

BEMF FBK LEAD BEMF FBK LAG

MAX VOLTS

It is the over-voltage of the back-EMF that provides the error which drives this controller to weaken the field, and the over-voltage occurring during ramp through base speed is dependent on the rate of ramp. If the over-voltage is excessive, then it can be reduced most simply by switching to the ADVANCED field weakening mode. In the STANDARD mode, provide advanced notice of the overvoltage, in order to reduce it, by employing the lag/lead filter applied to the back-emf measurement. This filter is disabled by default through its equal lag and lead time-constant settings, increase the lead time-constant to provide advance notice of weakening to the controller.


Notes on field weakening controller usage:

- 1. The use of the back-EMF filter should be limited to 3:1 ratio of lag to lead time-constants, and the field current loop and field weakening controller may need to be de-tuned, in order to maintain overall loop stability.
- 2. The gain-limit of the PI controller may also be adjusted in order to optimise the balance between transient and static back-EMF over-voltage. Lower lag time-constants and lower dc-gains result in more static back-EMF over-voltage, but allow for more back-EMF filter advance during speed ramps. The ratio of lag to lead time-constants should be typically maintained above 10 to avoid significant dc over-voltage on the back-EMF.

ADVANCED Mode

The ADVANCED mode of the field weakener offers the following advantages over the STANDARD mode.

- 1. A feedforward control is applied in addition to the gain-capped PI controller. This term, which compares the actual speed feedback to the calculated base speed, estimates the required field weakening. The use of this control term significantly reduces the overvoltage on transition through base speed, prior to the application of any lead-lag compensation. Transistions through base speed can be more rapid without overvoltage as a result. In addition, false weakening of the field is eliminated for speed transients just below base speed, if the lead-lag backemf filter is left disabled.
- 2. **The back-emf control loop is gain compensated for reducing field level.** Motor back-emf is related directly to the motor speed, and to the motor flux level. As a result the transfer gain from field current to back-emf is directly related to motor speed. An adaptive gain element is included in the ADVANCED mode that increases back-emf loop gain below full speed, and this allows improved control performance at the field weakening boundary whilst maintaining stability at full speed.
- 3. The speed control loop is gain compensated for reducing field level. Motor torque is related directly to both armature current and motor flux level. An adaptive gain element is included in the ADVANCED mode that increases speed loop gain below full field, and this maintains speed control performance into the field weakened operating region. Note that the lag-lead back-emf filter can still be applied in the ADVANCED mode to further improve voltage control during rapid excursions into field weakening.

Standby Field

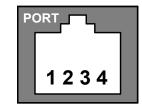
When the armature current gets quenched, a timer starts timing-out and after a certain delay (FLD. QUENCH DELAY) it will either quench the field totally (FLD. QUENCH MODE = QUENCH) or will reduce it to 50% of the current or voltage setpoint (FIELD QUECH MODE = STANDBY). This applies to both current and voltage modes.

Appendix A Serial Communications

System	n Port (P3)	A-1
-	UDP Support	A-2
•	CACT Support	A-4

System Port (P3)

This port has several uses:


UDP Support	Upload information from a PC	Refer to page A-2
CACT	Parameters can be monitored and updated by CACT (or other suitable PC programming tool)	Refer to page A-4
EI ASCII	Communications with other control/supervisory equipment	Refer to page A-8
EI BINARY	Communications with other control/supervisory equipment	Refer to page A-13

Drive Connections

The port is an un-isolated RS232, 9600 Baud (default), supporting the standard EI BISYNCH ASCII communications protocol. Contact DC900P Drives for further information.

Use a standard P3 lead to connect to the Drive.

P3 Port Pin	Lead	Signal
1	Black	OV
2	Red	24V
3	Green	TX
4	Yellow	RX

6-Way Lead to DB9/DB25 Connector

IMPORTANT There is 24V present on pin 2 of the P3 port. This may damage your PC or the Drive.

P3 Port Pin	Lead	Female DB9 Pin	Female DB25 Pin
1	Black	5	7
2	Red	not connected	not connected
3	Green	2	3
4	Yellow	3	2

UDP Support

The Upload Download Protocol (UDP) can be used to transfer text files between the drive and a host computer using the P3 port. Files that can be transferred using UDP are configuration files, language files and text "dumps" of all the parameters shown on the MMI.

Configuration files and language files are formatted as Intel Hex files. The files contain a copy of the drive's configuration and may be transferred either from the drive to the host computer, or from the host computer to the drive. Transferring a configuration file to the drive will over-write all the drive's settings.

Language files contain information required to display parameters on the Display/Keypad in a language other than English. These may only be transferred from the host computer to the drive. Contact Drives for further information.

MMI dumps are human readable text files showing all the parameters in the drive in the order they are shown on the MMI. The files can only be transferred from a drive to the host computer.

System Port (P3) Set-up

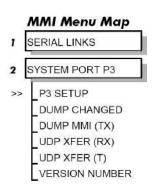
When transferring data using UDP the communications settings used are:

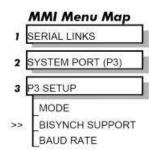
Baud rate selected via the P3 BAUD RATE parameter, (Tag No 198).

1 Stop bit, (fixed)

No Parity, (fixed)

8 data bits, (fixed)


No flow control, (fixed)


UDP Transfer Procedure

UDPXFER(RX)

This is the transfer of either a language or a configuration file from the host computer to the Drive. The drive automatically detects whether the file is a language file or a configuration file. Transferring a configuration file to the drive will over-write all the drive's settings.

- 1. Connect the Drive to the host using the appropriate lead.
- Using a standard communications package prepare the host to transfer an ASCII file. Remember to set-up the host's serial portfirst.
- Start the transfer on the Drive by selecting UDP XFER (RX) on the MMI and pressing the UP (\underline{\cap}) key, as instructed.
- When the Drive says RECEIVING, begin the file transmission.
- 5. The Drive automatically terminates the UDP transfer when it detects the end of the Intel Hex end-of-file record.

UDPXFER(TX)

This is the transfer of the drive's settings as an Intel Hex file.

- 1. Connect the Drive to the host using the appropriate lead.
- 2. Using a standard communications package prepare the host to receive an ASCII file. Remember to set up the host's serial port first.
- 3. On the host computer, direct data received on the serial comms port to a file.
- 4. Start the transfer on the Drive by selecting UDP XFER (TX) on the MMI and pressing the UP (↑) key, as instructed. The drive says SENDING.
- **5**. When the transfer is finished, terminate the capture of serial data on the host computer.

MMI Dump Procedure

The MMI dump can be used to transfer all of the drive's parameters or just those that have been changed from the default values. The format of the data is human readable and may be used as documentation of the drive's configuration.

DUMP CHANGED

This parameter is used in conjunction with DUMP MMI (TX). When TRUE, only those parameters that have been modified from their default value are included in the dump.

DUMP MMI(TX)

This is the transfer of all parameters.

- 1. Connect the Drive to the host using the appropriate lead.
- 2. Using a standard communications package prepare the host to receive an ASCII file. Remember to set up the host's serial port first.
- 3. On the host computer, direct data received on the serial comms port to a file.
- 4. Start the transfer on the Drive by selecting DUMP MMI (TX) on the MMI and pressing the UP (↑) key, as instructed. The drive says REQUESTED.
- **5.** When the transfer is finished, terminate the capture of serial data on the host computer.

CACT Support

This is Windows-based block programming software. It has a graphical user interface and drawing tools to allow you to create block programming diagrams quickly and easily.

System Port (P3) Set-up

Set MODE parameter (Tag No. 130) to EIASCII using the MMI

Set the BAUD RATE parameter to match the baud rate selected on the host computer.

1 Stop bit (fixed)

Even Parity (fixed)

7 bits (fixed)

No flow control, (fixed)

Appendix B Parameter Specification Tables

Details for all parameters provided on the Keypad.

Parameter Tables	B-1
Specification Table: Tag Number Order	B-2

Parameter Tables

The headings for the Tag No. table are described below.

	1								
Tag	A numeric identification of the	parameter. It is use	ed to identify the source and destinations of internal links.						
Mn	Serial Communications Mnen Refer to Appendix A: "Serial (
MMI Block Name	The menu page under which	the parameter is sto	red on the MMI.						
MMI Parameter Name	The parameter name as it app	pears on the MMI.							
Minimum/Maximum/	The Range varies with parame	eter type:							
Default/Units/Range	INT The upper and lower decimal.	The upper and lower limits of the parameter, indicating the parameter's true, internally-held, number of decimal.							
	one decima	Note: Decimal Places - some internally held parameters with two decimal places are only displayed with one decimal place. These parameters are indicated in the Parameter Description tables. The Range parameter highlights these with "(h)".							
	BOOL 0 = FALSE, 1 = TR	RUE							
	WORD 0x0000 to 0xFFFF	(hexadecimal)							
Notes	Output parameters are not sa Input parameters are saved ir								
	View levels: V0 Normal V1 Advanced	Write qualifiers: W0 W1 W2 W3 W4	Always Only when stopped Only when in configuration mode Only in thee-button reset mode Read only, (output parameters)						

Parameter Types:

Parameters that look like 0x0000 are WORDS

Parameters that have text are BOOLs if they have a range of 0,1

Parameters that have text are WORDS if their range is 0 to greater than 1

All other parameters are INT (integers)

If a parameter can only be written to in Config mode, this implies that the drive is stopped.

Specification Table: Tag Number Order

Tag	Mn	MMI Block Name	MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Not	es
2	a2	RAMPS	RAMP ACCEL TIME	0.1	600.0	10.0	S		V0	W0
3	a3	RAMPS	RAMP DECEL TIME	0.1	600.0	10.0	s		V0	W0
5	a5	MIN SPEED	RAMP INPUT	-105.00	105.00	0.00	%		V1	W0
6	a6	SETPOINT SUM 1	RATIO 1	-3.0000	3.0000	1.0000			V0	W0
7	a7	SPEED LOOP	RATIO 2 (A3)	-3.0000	3.0000	1.0000			V0	W0
8	a8	SETPOINT SUM 1	SIGN 1	0	1	1		0: NEGATIVE 1: POSITIVE	V1	W0
9	a9	SPEED LOOP	SIGN 2 (A3)	0	1	1		0: NEGATIVE 1: POSITIVE	V0	W0
10	aa	CALIBRATION	ZERO SPD. OFFSET	-5.00	5.00	0.00	%		V0	W0
11	ab	STANDSTILL	STANDSTILL LOGIC	0	1	0		0: DISABLED 1: ENABLED	V0	W0
12	ac	STANDSTILL	ZERO THRESHOLD	0.00	100.00	2.00	%		V0	W0
13	ad	SPEED LOOP	SPD.INT.TIME	0.001	30.000	0.500	s		V0	W0
14	ae	SPEED LOOP	SPD.PROP.GAIN	0.00	200.00	10.00			V0	W0
15	af	CURRENT LOOP	CUR.LIMIT/SCALER	0.00	200.00	100.00	%		V0	W0
16	ag	CURRENT LOOP	PROP. GAIN	0.00	200.00	45.00			V0	W0
17	ah	CURRENT LOOP	INT. GAIN	0.00	200.00	3.50			V0	W0
18	ai	AUTOTUNE	AUTOTUNE	0	2	0		0: OFF 1: ARMATURE 2: FIELD	V0	W0
19	aj	ALARMS	FIELD FAIL	0	1	0		0: ENABLED 1: INHIBITED	V0	W0
20	ak	CALIBRATION	ARMATURE V CAL.	0.9800	1.1000	1.0000			V0	W0
21	al	CALIBRATION	IR COMPENSATION	0.00	100.00	0.00	%		V0	W0
22	am	ENCODER 1	ENCODER RPM	0	6000	1000	RPM		V0	W1
23	an	CALIBRATION	ANALOG TACH CAL	0.9800	1.1000	1.0000			V0	W0
24	ao	ENCODER 1	ENCODER LINES	10	5000	1000			V0	W1
25	ap	CALIBRATION	ARMATURE I (A9)	0	1	1		0: UNIPOLAR 1: BIPOLAR	V0	W0
26	aq	STOP RATES	PROG STOP TIME	0.1	600.0	0.1	S		V0	W0
27	ar	STOP RATES	STOP TIME	0.1	600.0	10.0	s		V0	W0

Tag	Mn	MMI Block Name		MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Not	ies
28	as	ALARMS		STALL TRIP	0	1	0		0: ENABLED 1: INHIBITED	V1	W0
29	at	STOP RATES		STOP ZERO SPEED	0.00	100.00	2.00	%		V0	W0
30	au	CURRENT LOOP		ADDITIONAL DEM	-200.00	200.00	0.00	%		V1	W0
31	av	CURRENT PROFILE		SPD BRK2 (HIGH)	0.0	100.0	100.0	%		V0	W1
32	aw	CURRENT PROFILE		SPD BRK1 (LOW)	0.0	100.0	100.0	%		V0	W1
33	ax	CURRENT PROFILE		IMAX BRK2(SPD2)	0.0	200.0	200.0	%		V0	W1
37	b1	MENUS		VIEW LEVEL	0	2	1		0: BASIC 1: STANDARD 2: ADVANCED	V0	W0
39	b3	CONFIGURE DRIVE		CONFIGURE ENABLE	0	1	0		0: DISABLED 1: ENABLED	V0	W1
41	b5	SPEED LOOP		SETPOINT 4	-105.00	105.00	0.00	%		V0	W0
42	b6	CURRENT LOOP		AT CURRENT LIMIT	0	1	0			V1	W4
43	b7	DIGITAL OUTPUT	1	MODULUS	0	1	1			V0	W0
44	b8	DIGITAL OUTPUT	2	MODULUS	0	1	1			V0	W0
45	b9	DIGITAL OUTPUT	3	MODULUS	0	1	1			V0	W0
47	bb	SPEED LOOP		SPEED FBK SELECT	0	4	0		0: ARM VOLTS FBK 1: ANALOG TACH 2: ENCODER 3: ENCODER/ANALOG 4: ENCODER 2	V0	W1
48	bc	CURRENT LOOP		NEG. I CLAMP IN	-200.00	200.00	-200.00	%		V1	W0
49	bd	ENCODER	1	ENCODER SIGN	0	1	1		0: NEGATIVE 1: POSITIVE	V0	W1
50	be	ANALOG INPUT	1	ANIN 1 (A2)	0.00	0.00	0.00	V		V1	W4
51	bf	ANALOG INPUT	2	ANIN 2 (A3)	0.00	0.00	0.00	V		V1	W4
52	bg	ANALOG INPUT	3	ANIN 3 (A4)	0.00	0.00	0.00	V		V1	W4
53	bh	ANALOG INPUT	4	ANIN 4 (A5)	0.00	0.00	0.00	V		V1	W4
54	bi	ANALOG INPUT	5	ANIN 5 (A6)	0.00	0.00	0.00	V		V1	W4
55	bj	ANALOG OUTPUT	1	ANOUT 1 (A7)	0.0	0.0	0.0	V		V1	W4
56	bk	ANALOG OUTPUT	2	ANOUT 2 (A8)	0.0	0.0	0.0	V		V1	W4
57	bl	CALIBRATION		TERMINAL VOLTS	0.0	0.0	0.0	%		V1	W4
58	bm	CALIBRATION		UNFIL.TACH INPUT	0.0	0.0	0.0	%		V0	W4
59	bn	ENCODER	1	UNFIL.ENCODER	0	0	0	RPM		V0	W4

B-4 Parameter Specification Tables

Tag	Mn	MMI Block Name		MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Not	es
60	bo	CALIBRATION		BACK EMF	0.0	0.0	0.0	%		V0	W4
61	bp	CURRENT LOOP		ACTUAL NEG I LIM	0.0	0.0	0.0	%		V0	W4
62	bq	SPEED LOOP		UNFIL.SPD.FBK	0.00	0.00	0.00	%		V0	W4
63	br	SPEED LOOP		SPEED SETPOINT	0.00	0.00	0.00	%		V0	W4
64	bs	SPEED LOOP		UNFIL.SPD.ERROR	0.00	0.00	0.00	%		V0	W4
65	bt	CURRENT LOOP		IaFbk UNFILTERED	0.0	0.0	0.0	%		V0	W4
66	bu	CURRENT LOOP		IaDmd UNFILTERED	0.0	0.0	0.0	%		V0	W4
67	bv	CURRENT LOOP		ACTUAL POS I LIM	0.0	0.0	0.0	%		V0	W4
68	bw	SEQUENCING		START (C3)	0	1	0		0: OFF 1: ON	V1	W4
69	bx	DIGITAL INPUT	4	DIGITAL INPUT C4	0	1	0		0: OFF 1: ON	V1	W4
70	by	DIGITAL INPUT	5	DIGITAL INPUT C5	0	1	0		0: OFF 1: ON	V1	W4
71	bz	DIGITAL INPUT	1	DIGIN 1 (C6)	0	1	0		0: OFF 1: ON	V1	W4
72	c0	DIGITAL INPUT	2	DIGIN 2 (C7)	0	1	0		0: OFF 1: ON	V1	W4
73	c1	DIGITAL INPUT	3	DIGIN 3 (C8)	0	1	0		0: OFF 1: ON	V1	W4
74	c2	DIGITAL OUTPUT	1	DIGOUT 1 (B5)	0	1	0		0: OFF 1: ON	V1	W4
75	c3	DIGITAL OUTPUT	2	DIGOUT 2 (B6)	0	1	0		0: OFF 1: ON	V1	W4
76	c4	DIGITAL OUTPUT	3	DIGOUT 3 (B7)	0	1	0		0: OFF 1: ON	V1	W4
77	c5	STANDSTILL		AT ZERO SPEED	0	1	0			V0	W4
78	c6	STANDSTILL		AT ZERO SETPOINT	0	1	0			V1	W4
79	c7	STANDSTILL		AT STANDSTILL	0	1	0			V1	W4
80	c8	SEQUENCING		PROGRAM STOP	0	1	0			V1	W4
81	с9	ALARMS		SPEED FBK ALARM	0	1	0		0: ENABLED 1: INHIBITED	V0	W0
82	ca	SEQUENCING		DRIVE START	0	1	0		0: OFF 1: ON	V0	W4
83	cb	SEQUENCING		CONTACTOR CLOSED	0	1	0			V0	W4

Tag	Mn	MMI Block Name		MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Not	es
84	cc	SEQUENCING		DRIVE ENABLE	0	1	0			V0	W4
85	cd	RAMPS		RAMP OUTPUT	0.00	0.00	0.00	%		V1	W4
86	ce	SETPOINT SUM	1	SPT SUM OUTPUT	0.00	0.00	0.00	%		V1	W4
87	cf	CURRENT LOOP		POS. I CLAMP	0.0	0.0	0.0	%		V1	W4
88	cg	CURRENT LOOP		NEG. I CLAMP	0.0	0.0	0.0	%		V1	W4
89	ch	SPEED LOOP		SPEED DEMAND	0.00	0.00	0.00	%		V0	W4
90	ci	CURRENT LOOP		BIPOLAR CLAMPS	0	1	0		0: DISABLED 1: ENABLED	V1	W0
91	cj	STOP RATES		PROG STOP I LIM	0.00	200.00	100.00	%		V0	W0
92	ck	ALARMS		ENCODER ALARM	0	1	0		0: ENABLED 1: INHIBITED	V0	W0
93	cl	CURRENT PROFILE		IMAX BRK1(SPD1)	0.0	200.0	200.0	%		V0	W1
94	cm	AUX I/O		AUX DIGOUT 1	0	1	0		0: OFF 1: ON	V0	W0
95	cn	AUX I/O		AUX DIGOUT 2	0	1	0		0: OFF 1: ON	V0	W0
96	со	AUX I/O		AUX DIGOUT 3	0	1	0		0: OFF 1: ON	V0	W0
97	ср	LINK	13	SOURCE TAG	-1276	1276	77			V0	W2
98	cq	LINK	14	SOURCE TAG	-1276	1276	122			V0	W2
99	cr	LINK	15	SOURCE TAG	-1276	1276	125			V0	W2
100	cs	DEADBAND		INPUT 1	-200.00	200.00	0.00	%		V1	W0
102	cu	LINK	20	DESTINATION TAG	0	1276	90			V0	W2
103	cv	DIGITAL INPUT	1	VALUE FOR TRUE	-300.00	300.00	0.01	%		V0	W0
104	cw	DIGITAL INPUT	1	VALUE FOR FALSE	-300.00	300.00	0.00	%		V0	W0
105	cx	LINK	21	DESTINATION TAG	0	1276	118			V0	W2
106	cy	DIGITAL INPUT	2	VALUE FOR TRUE	-300.00	300.00	0.01	%		V0	W0
107	cz	DIGITAL INPUT	2	VALUE FOR FALSE	-300.00	300.00	0.00	%		V0	W0
108	d0	LINK	22	DESTINATION TAG	0	1276	119			V0	W2
109	d1	DIGITAL INPUT	3	VALUE FOR TRUE	-300.00	300.00	0.01	%		V0	W0
110	d2	DIGITAL INPUT	3	VALUE FOR FALSE	-300.00	300.00	0.00	%		V0	W0
111	d3	ALARMS		RCV ERROR	0	1	0		0: ENABLED 1: INHIBITED	V0	W0
112	d4	ALARMS		STALL TRIP	0	1	0		0: OK 1: FAILED	V1	W4

B-6 Parameter Specification Tables

Tag	Mn	MMI Block Name	MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Not	es
113	d5	RAMPS	RAMPING	0	1	0			V1	W4
114	d6	SEQUENCING	SEQ STATE	0	15	0		0: SEQ INIT 1: SEQ INIT 2: SEQ HOLD 3: SEQ STANDBY 4: SEQ PRE READY 5: SEQ READY 6: SEQ AUTOTUNING 7: SEQ RUN 8: SEQ AT ZERO SPD. 9: SEQ QUENCH 10: SEQ PROGRAM STOP 11: SEQ STOP 12: SEQ DELAY STOP 13: SEQ COAST STOP 14: SEQ ERROR 15: CURRENT DECAY	V0	W4
115	d7	ALARMS	HEALTH WORD	0x0000	0xFFFF	0x0000			V1	
116	d8	ALARMS	HEALTH STORE	0x0000	0xFFFF	0x0000			V1	W4
118	da	RAMPS	RAMP HOLD	0	1	0		0: OFF 1: ON	V1	W0
119	db	CURRENT LOOP	I DMD. ISOLATE	0	1	0		0: DISABLED 1: ENABLED	V1	W0
120	dc	MENUS	ENTER PASSWORD	0x0000	0xFFFF	0x04D2			V0	W0
121	dd	MENUS	CHANGE PASSWORD	0x0000	0xFFFF	0x0000			V1	W0
122	de	ALARMS	HEALTH LED	0	1	0			V0	W4
125	dh	SEQUENCING	READY	0	1	0			V0	W4
126	di	MIN SPEED	MIN SPEED	0.00	100.00	0.00	%		V1	W0
128	dk	AUX I/O	ANOUT 1	-100.00	100.00	0.00	%		V0	W0
129	dl	AUX I/O	ANOUT 2	-100.00	100.00	0.00	%		V0	W0
130	dm	COMMS PORT 3	MODE	0	4	3		0: DISABLED 1: MASTER 2: SLAVE 3: EIASCII 4: EIBINARY	V0	
131	dn	DEADBAND	DEADBAND WIDTH	0.0	100.0	0.0	%			W0
132	do	IN	SETPT. RATIO	-3.0000	3.0000	0.0000			V0	W0

Tag	Mn	MMI Block Name	MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Not	ies
133	dp	IN	SETPT. SIGN	0	1	1		0: NEGATIVE 1: POSITIVE	V0	W0
134	dq	LINK 16	SOURCE TAG	-1276	1276	89			V0	W2
135	dr	LINK 45	DESTINATION TAG	0	1276	41			V0	W2
137	dt	CURRENT LOOP	DISCONTINUOUS	0.00	200.00	12.00	%		V0	W0
155	eb	DRIVE INFO	VERSION NUMBER	0x0000	0xFFFF	0x0000			V0	W4
158	ee	COMMS PORT 2	ERROR REPORT	0x0000	0xFFFF	0x00C0			V0	W0
161	eh	SEQUENCING	AUX START	0	1	1		0: OFF 1: ON	V0	W0
162	ei	CONFIGURE DRIVE	EMULATE 900P	0x0000	0xFFFF	0x0001			V1	W2
168	eo	SEQUENCING	AUX ENABLE	0	1	1		0: OFF 1: ON	V0	W0
169	ер	FIELD CONTROL	FIELD ENABLED	0	1	0		0: DISABLED 1: ENABLED	V0	W4
170	eq	FIELD CONTROL	FIELD ENABLE	0	1	1		0: DISABLED 1: ENABLED	V0	W1
171	er	FIELD CONTROL	SETPOINT	0.00	100.00	100.00	%		V1	W0
172	es	FIELD CONTROL	INT. GAIN	0.00	100.00	1.28			V0	W0
173	et	FIELD CONTROL	PROP. GAIN	0.00	100.00	0.10			V0	W0
174	eu	FIELD CONTROL	FLD. WEAK ENABLE	0	2	0		0: DISABLED 1: STANDARD 2: ADVANCED	V0	W1
175	ev	FIELD CONTROL	EMF LEAD	0.10	50.00	2.00			V0	W0
176	ew	FIELD CONTROL	EMF LAG	0.00	200.00	40.00			V0	W0
177	ex	FIELD CONTROL	EMF GAIN	0.00	100.00	0.30			V0	W0
178	ey	FIELD CONTROL	MAX VOLTS	0.00	100.00	100.00	%		V0	W0
179	ez	FIELD CONTROL	MIN FLD.CURRENT	0.00	100.00	90.00	%		V0	W1
180	f0	ALARMS	SPDFBK ALM LEVEL	0.0	100.0	50.0	%		V1	W0
181	f1	FEEDBACKS	UNFIL.FIELD FBK	0.00	0.00	0.00	%		V0	W4
182	f2	CALIBRATION	FIELD I CAL.	0.9800	1.1000	1.0000			V0	W0
183	f3	FIELD CONTROL	FIELD DEMAND	0.00	0.00	0.00	%		V1	W4
184	f4	FIELD CONTROL	FLD.FIRING ANGLE	0.00	0.00	0.00	DEG		V1	W4
185	f5	FIELD CONTROL	FLD.QUENCH DELAY	0.0	600.0	0.0	s		V1	W0
186	f6	FIELD CONTROL	FLD. QUENCH MODE	0	1	0		0: QUENCH 1: STANDBY	V1	W0

B-8 Parameter Specification Tables

Tag	Mn	MMI Block Name		MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Not	tes
187	f7	IN		RAW INPUT	0.00	0.00	0.00	%		V0	W4
189	f9	IN		SCALED INPUT	0.00	0.00	0.00	%		V0	W4
191	fb	FIELD CONTROL		BEMF FBK LEAD	20	5000	100			V0	W0
192	fc	FIELD CONTROL		BEMF FBK LAG	20	5000	100			V0	W0
195	ff	DIGITAL OUTPUT	1	THRESHOLD (>)	-300.00	300.00	0.00	%		V0	W0
196	fg	DIGITAL OUTPUT	2	THRESHOLD (>)	-300.00	300.00	0.00	%		V0	W0
197	fh	DIGITAL OUTPUT	3	THRESHOLD (>)	-300.00	300.00	0.00	%		V0	W0
198	fi	COMMS PORT	3	BAUD RATE	0	9	5		0: 300 1: 600 2: 1200 3: 2400 4: 4800 5: 9600 6: 19200 7: 38400 8: 57600 9: 115200	V0	W0
201	fl	CURRENT LOOP		REGEN ENABLE	0	1	1		0: 2Q (NON-REGEN) 1: 4Q (REGEN)	V0	W1
202	fm	SPEED LOOP		INT. DEFEAT	0	1	0		0: OFF 1: ON	V1	W0
203	fn	INVERSE TIME		INVERSE TIME O/P	0.00	0.00	0.00	%		V1	W4
206	fq	ENCODER	1	ENCODER	0	0	0	RPM		V0	W4
207	fr	FEEDBACKS		SPEED FEEDBACK	0.00	0.00	0.00	%		V0	W4
208	fs	SETPOINT SUM	1	RATIO 0	-3.0000	3.0000	1.0000			V0	W0
209	ft	FIELD CONTROL		FLD.CTRL MODE	0	1	0		0: VOLTAGE CONTROL 1: CURRENT CONTROL	V0	W1
210	fu	FIELD CONTROL		FLD.VOLTS RATIO	0.0	100.0	90.0	%		V0	W0
212	fw	JOG/SLACK		OPERATING MODE	0	7	0		0: STOP 1: STOP 2: JOG SP. 1 3: JOG SP. 2 4: RUN 5: TAKE UP SP. 1 6: TAKE UP SP. 2 7: CRAWL	V1	W4
216	g0	STOP RATES		PROG STOP LIMIT	0.0	600.0	60.0	S		V1	W0

Tag	Mn	MMI Block Name		MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Not	ies
217	g1	STOP RATES		STOP LIMIT	0.0	600.0	60.0	s		V1	W0
218	g2	JOG/SLACK		JOG SPEED 1	-100.00	100.00	5.00	%		V0	W0
219	g3	JOG/SLACK		JOG SPEED 2	-100.00	100.00	-5.00	%		V0	W0
224	g8	ALARMS		STALL TRIP DELAY	0.1	600.0	30.0	s		V1	W0
225	g9	JOG/SLACK		CRAWL SPEED	-100.00	100.00	10.00	%		V0	W0
227	gb	SEQUENCING		AUX JOG	0	1	1		0: OFF 1: ON	V0	W0
228	gc	JOG/SLACK		MODE	0	1	0			V0	W0
230	ge	ANALOG INPUT	1	CALIBRATION	-3.0000	3.0000	1.0000			V0	W0
231	gf	ANALOG INPUT	1	MAX VALUE	-300.00	300.00	100.00	%		V0	W0
232	gg	ANALOG INPUT	1	MIN VALUE	-300.00	300.00	-100.00	%		V0	W0
233	gh	ANALOG INPUT	2	CALIBRATION	-3.0000	3.0000	1.0000			V0	W0
234	gi	ANALOG INPUT	2	MAX VALUE	-300.00	300.00	100.00	%		V0	W0
235	gj	ANALOG INPUT	2	MIN VALUE	-300.00	300.00	-100.00	%		V0	W0
236	gk	ANALOG INPUT	3	CALIBRATION	-3.0000	3.0000	1.0000			V0	W0
237	gl	ANALOG INPUT	3	MAX VALUE	-300.00	300.00	100.00	%		V0	W0
238	gm	ANALOG INPUT	3	MIN VALUE	-300.00	300.00	-100.00	%		V0	W0
239	gn	ANALOG INPUT	4	CALIBRATION	-3.0000	3.0000	1.0000			V0	W0
240	go	ANALOG INPUT	4	MAX VALUE	-300.00	300.00	200.00	%		V0	W0
241	gp	ANALOG INPUT	4	MIN VALUE	-300.00	300.00	-200.00	%		V0	W0
242	gq	ANALOG INPUT	5	CALIBRATION	-3.0000	3.0000	1.0000			V0	W0
243	gr	ANALOG INPUT	5	MAX VALUE	-300.00	300.00	200.00	%		V0	W0
244	gs	ANALOG INPUT	5	MIN VALUE	-300.00	300.00	-200.00	%		V0	W0
245	gt	ANALOG OUTPUT	1	% TO GET 10V	-300.00	300.00	100.00	%		V0	W0
246	gu	LINK	23	DESTINATION TAG	0	1276	100			V0	W2
247	gv	LINK	26	DESTINATION TAG	0	1276	301			V0	W2
248	gw	ANALOG OUTPUT	2	% TO GET 10V	-300.00	300.00	100.00	%		V0	W0
249	gx	LINK	24	DESTINATION TAG	0	1276	5			V0	W2
250	gy	LINK	25	DESTINATION TAG	0	1276	48			V0	W2
251	gz	LINK	17	SOURCE TAG	-1276	1276	62			V0	W2
252	h0	LINK	18	SOURCE TAG	-1276	1276	63			V0	W2
253	h1	JOG/SLACK		TAKE UP 1	-100.00	100.00	5.00	%		V0	W0
254	h2	JOG/SLACK		TAKE UP 2	-100.00	100.00	-5.00	%		V0	W0
255	h3	RAISE/LOWER		RESET VALUE	-300.00	300.00	0.00	%		V0	W0

B-10 Parameter Specification Tables

Tag	Mn	MMI Block Name	MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Not	es
256	h4	RAISE/LOWER	INCREASE RATE	0.1	600.0	10.0	s		V0	W0
257	h5	RAISE/LOWER	DECREASE RATE	0.1	600.0	10.0	s		V0	W0
258	h6	RAISE/LOWER	MIN VALUE	-300.00	300.00	-100.00	%		V0	W0
259	h7	RAISE/LOWER	MAX VALUE	-300.00	300.00	100.00	%		V0	W0
260	h8	LINK 27	RAISE/LOWER DEST	0	1276	0			V0	W2
261	h9	RAISE/LOWER	RAISE INPUT	0	1	0			V0	W0
262	ha	RAISE/LOWER	LOWER INPUT	0	1	0			V0	W0
263	hb	ALARMS	STALL THRESHOLD	0.00	200.00	95.00	%		V1	W0
264	hc	RAISE/LOWER	RAISE/LOWER O/P	0.00	0.00	0.00	%		V0	W4
266	he	RAMPS	% S-RAMP	0.00	100.00	2.50	%		V1	W0
268	hg	SPEED LOOP	MODE	0	3	0		0: DISABLED 1: SPD FBK DEP 2: SPD ERR DEP 3: CUR DMD DEP	V0	W0
269	hh	SPEED LOOP	SPD BRK1 (LOW)	0.00	100.00	1.00	%		V0	W0
270	hi	SPEED LOOP	SPD BRK2 (HIGH)	0.00	100.00	5.00	%		V0	W0
271	hj	SPEED LOOP	PROP. GAIN	0.00	200.00	5.00			V0	W0
272	hk	SPEED LOOP	INT.TIME.CONST	0.001	30.000	0.500	S		V0	W0
274	hm	SPEED LOOP	I GAIN IN RAMP	0.0000	2.0000	1.0000			V0	W0
284	hw	SPEED LOOP	ZERO SPD. LEVEL	0.00	200.00	0.50	%		V0	W0
285	hx	SPEED LOOP	ZERO IAD LEVEL	0.00	200.00	1.50	%		V0	W0
286	hy	RAMPS	RAMPING THRESH.	0.00	100.00	0.50	%		V1	W0
287	hz	RAMPS	AUTO RESET	0	1	1		0: DISABLED 1: ENABLED	V1	W0
288	i0	RAMPS	EXTERNAL RESET	0	1	0		0: DISABLED 1: ENABLED	V1	W0
289	il	SPEED LOOP	SETPOINT 1	-105.00	105.00	0.00	%		V0	W0
290	i2	SPEED LOOP	SETPOINT 2 (A3)	0.00	0.00	0.00	%		V0	W4
291	i3	SPEED LOOP	SETPOINT 3	-105.00	105.00	0.00	%		V0	W0
292	i4	SETPOINT SUM 1	SIGN 0	0	1	1		0: NEGATIVE 1: POSITIVE	V1	W0
293	i5	LINK 28	RAMP O/P DEST	0	1276	291			V0	W2
294	i6	LINK 29	SPT SUM 1 DEST	0	1276	289			V0	W2
297	i9	SPEED LOOP	SPEED ERROR	0.00	0.00	0.00	%		V0	W4
298	ia	FEEDBACKS	CURRENT FEEDBACK	0.00	0.00	0.00	%		V0	W4

Tag	Mn	MMI Block Name	MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Not	es
299	ib	CURRENT LOOP	CURRENT DEMAND	0.00	0.00	0.00	%		V0	W4
300	ic	FIELD CONTROL	FIELD I FBK.	0.00	0.00	0.00	%		V0	W4
301	id	CURRENT LOOP	POS. I CLAMP IN	-200.00	200.00	200.00	%		V0	W0
302	ie	STOP RATES	CONTACTOR DELAY	0.1	600.0	1.0	s		V1	W0
304	ig	MENUS	LANGUAGE	0	1	0		0: ENGLISH 1: ENGLISH	V1	W1
305	ih	ALARMS	TRIP RESET	0	1	1			V1	W0
306	ii	LINK 19	SOURCE TAG	-1276	1276	89			V0	W2
307	ij	RAISE/LOWER	EXTERNAL RESET	0	1	0			V1	W0
308	ik	FEEDBACKS	TACH INPUT	0.0	0.0	0.0	%		V0	W4
309	il	SETPOINT SUM 1	INPUT 0	-300.00	300.00	0.00	%		V1	W0
312	io	PNO CONFIG	PNO 112	-1276	1276	0			V0	W0
313	ip	PNO CONFIG	PNO 113	-1276	1276	0			V0	W0
314	iq	PNO CONFIG	PNO 114	-1276	1276	0			V0	W0
315	ir	PNO CONFIG	PNO 115	-1276	1276	0			V0	W0
316	is	PNO CONFIG	PNO 116	-1276	1276	0			V0	W0
317	it	PNO CONFIG	PNO 117	-1276	1276	0			V0	W0
318	iu	PNO CONFIG	PNO 118	-1276	1276	0			V0	W0
319	iv	PNO CONFIG	PNO 119	-1276	1276	0			V0	W0
320	iw	PNO CONFIG	PNO 120	-1276	1276	379			V0	W0
321	ix	PNO CONFIG	PNO 121	-1276	1276	380			V0	W0
322	iy	PNO CONFIG	PNO 122	-1276	1276	381			V0	W0
323	iz	PNO CONFIG	PNO 123	-1276	1276	382			V0	W0
324	j0	PNO CONFIG	PNO 124	-1276	1276	383			V0	W0
325	j1	PNO CONFIG	PNO 125	-1276	1276	384			V0	W0
326	j2	PNO CONFIG	PNO 126	-1276	1276	385			V0	W0
327	ј3	PNO CONFIG	PNO 127	-1276	1276	0			V0	W0
328	j4	COMMS PORT 3	ESP SUP.(ASCII)	0	1	1			V0	W0
329	j5	COMMS PORT 3	GROUP ID (GID)	0	7	0			V0	W0
330	j6	COMMS PORT 3	UNIT ID (UID)	0	255	0			V0	W0
337	jd	ALARMS	THERMISTOR STATE	0	1	0			V0	W4

B-12 Parameter Specification Tables

Tag	Mn	MMI Block Name		MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Note	es
339	jf	miniLINK		VALUE 1	-300.00	300.00	0.00	%		V1	W0
340	jg	miniLINK		VALUE 2	-300.00	300.00	0.00	%		V1	W0
341	jh	miniLINK		VALUE 3	-300.00	300.00	0.00	%		V1	W0
342	ji	miniLINK		VALUE 4	-300.00	300.00	0.00	%		V1	W0
343	jj	miniLINK		VALUE 5	-300.00	300.00	0.00	%		V1	W0
344	jk	miniLINK		VALUE 6	-300.00	300.00	0.00	%		V1	W0
345	jl	miniLINK		VALUE 7	-300.00	300.00	0.00	%		V1	W0
346	jm	miniLINK		LOGIC 1	0	1	0		0: OFF 1: ON	V1	W0
347	jn	miniLINK		LOGIC 2	0	1	0		0: OFF 1: ON	V1	W0
348	jo	miniLINK		LOGIC 3	0	1	0		0: OFF 1: ON	V1	W0
349	jp	miniLINK		LOGIC 4	0	1	0		0: OFF 1: ON	V1	W0
350	jq	miniLINK		LOGIC 5	0	1	0		0: OFF 1: ON	V1	W0
351	jr	miniLINK		LOGIC 6	0	1	0		0: OFF 1: ON	V1	W0
352	js	miniLINK		LOGIC 7	0	1	0		0: OFF 1: ON	V1	W0
353	jt	miniLINK		LOGIC 8	0	1	0		0: OFF 1: ON	V1	W0
355	jv	JOG/SLACK		RAMP RATE	0.1	600.0	1.0	s		V0	W0
357	jx	SPEED LOOP		MAX DEMAND	0.00	105.00	105.00	%		V0	W0
358	ју	SPEED LOOP		MIN DEMAND	-105.00	105.00	-105.00	%		V0	W0
359	jz	DIGITAL OUTPUT	1	INVERTED	0	1	0			V0	W0
360	k0	DIGITAL OUTPUT	2	INVERTED	0	1	0			V0	W0
361	k1	DIGITAL OUTPUT	3	INVERTED	0	1	0			V0	W0
362	k2	ANALOG OUTPUT	1	MODULUS	0	1	0			V0	W0
363	k3	ANALOG OUTPUT	2	MODULUS	0	1	0			V0	W0
364	k4	LINK	1	SOURCE TAG	-1276	1276	0			V0	W2
365	k5	LINK	1	DESTINATION TAG	0	1276	0			V0	W2
366	k6	LINK	2	SOURCE TAG	-1276	1276	0				W2
367	k7	LINK	2	DESTINATION TAG	0	1276	0			V0	W2

Tag	Mn	MMI Block Name		MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Not	es
368	k8	LINK	3	SOURCE TAG	-1276	1276	0			V0	W2
369	k9	LINK	3	DESTINATION TAG	0	1276	0			V0	W2
370	ka	LINK	4	SOURCE TAG	-1276	1276	0			V0	W2
371	kb	LINK	4	DESTINATION TAG	0	1276	0			V0	W2
374	ke	SEQUENCING		SYSTEM RESET	0	1	0			V0	W4
375	kf	SETPOINT SUM	1	LIMIT	0.00	200.00	105.00	%		V0	W0
376	kg	SEQUENCING		DRIVE RUNNING	0	1	0			V0	W4
379	kj	miniLINK		VALUE 8	-300.00	300.00	0.00	%		V1	W0
380	kk	miniLINK		VALUE 9	-300.00	300.00	0.00	%		V1	W0
381	kl	miniLINK		VALUE 10	-300.00	300.00	0.00	%		V1	W0
382	km	miniLINK		VALUE 11	-300.00	300.00	0.00	%		V1	W0
383	kn	miniLINK		VALUE 12	-300.00	300.00	0.00	%		V1	W0
384	ko	miniLINK		VALUE 13	-300.00	300.00	0.00	%		V1	W0
385	kp	miniLINK		VALUE 14	-300.00	300.00	0.00	%		V1	W0
390	ku	LINK	11	SOURCE TAG	-1276	1276	0			V0	W2
391	kv	LINK	43	DESTINATION TAG	0	1276	0			V0	W2
392	kw	ADVANCED	1	ADVANCED	0	1	0		0: OFF 1: ON	V0	W0
393	kx	ADVANCED	1	MODE	0	6	0		0: SWITCH 1: INVERT 2: AND 3: OR 4: SIGN CHANGER 5: MODULUS 6: COMPARATOR	V0	W0
394	ky	LINK	41	AUX.SOURCE	-1276	1276	0			V0	W2
395	kz	LINK	12	SOURCE TAG	-1276	1276	0			V0	W2
396	10	LINK	44	DESTINATION TAG	0	1276	0			V0	W2
397	11	ADVANCED	2	ADVANCED	0	1	0		0: OFF 1: ON	V0	W0
398	12	ADVANCED	2	MODE	0	6	0		See Tag 393	V0	W0
399	13	LINK	42	AUX.SOURCE	-1276	1276	0			V0	W2
400	14	LINK	30	PID O/P DEST	0	1276	0			V0	W2
401	15	PID		DERIVATIVE TC	0.000	10.000	0.000	s		V1	W0
402	16	PID		INT.TIME.CONST	0.01	100.00	5.00	s		V1	W0

B-14 Parameter Specification Tables

Tag	Mn	MMI Block Name		MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Not	es
403	17	PID		FILTER T.C.	0.000	10.000	0.100	s		V1	W0
404	18	PROFILED GAIN		PROP. GAIN	0.0	100.0	1.0			V1	W0
405	19	PID		POSITIVE LIMIT	0.00	105.00	100.00	%		V1	W0
406	la	PID		NEGATIVE LIMIT	-105.00	0.00	-100.00	%		V1	W0
407	lb	PID		O/P SCALER(TRIM)	-3.0000	3.0000	0.2000			V1	W0
408	lc	PID		ENABLE	0	1	1		0: DISABLED 1: ENABLED	V1	W0
409	ld	PID		INT. DEFEAT	0	1	0		0: OFF 1: ON	V1	W0
410	le	PID		INPUT 1	-300.00	300.00	0.00	%		V1	W0
411	lf	PID		INPUT 2	-300.00	300.00	0.00	%		V1	W0
412	lg	PID		RATIO 1	-3.0000	3.0000	1.0000			V1	W0
413	lh	PID		RATIO 2	-3.0000	3.0000	1.0000			V1	W0
414	li	PID		DIVIDER 2	-3.0000	3.0000	1.0000			V1	W0
415	lj	PID		PID ERROR	0.00	0.00	0.00	%		V1	W4
416	lk	PID		PID CLAMPED	0	1	0			V1	W4
417	11	PID		PID OUTPUT	0.00	0.00	0.00	%		V1	W4
418	lm	PID		DIVIDER 1	-3.0000	3.0000	1.0000			V1	W0
419	ln	SETPOINT SUM	1	DIVIDER 1	-3.0000	3.0000	1.0000			V1	W0
420	lo	SETPOINT SUM	1	DIVIDER 0	-3.0000	3.0000	1.0000			V0	W0
421	lp	CURRENT LOOP		MAIN CURR. LIMIT	0.00	200.00	110.00	%		V0	W0
422	lq	RAMPS		RESET VALUE	-300.00	300.00	0.00	%		V1	W0
423	lr	SETPOINT SUM	1	INPUT 2	-300.00	300.00	0.00	%		V1	W0
424	ls	DIAMETER CALC.		LINE SPEED	-105.00	105.00	0.00	%		V1	W0
425	lt	DIAMETER CALC.		MIN DIAMETER	0.00	100.00	10.00	%		V1	W0
426	lu	DIAMETER CALC.		MIN SPEED	0.00	100.00	5.00	%		V1	W0
427	lv	DIAMETER CALC.		DIAMETER	0.00	0.00	0.00	%		V1	W4
428	lw	DIAMETER CALC.		MOD OF LINE SPD	0.00	0.00	0.00	%		V0	W4
429	lx	DIAMETER CALC.		MOD OF REEL SPD	0.00	0.00	0.00	%		V0	W4
430	ly	DIAMETER CALC.		UNFILT DIAMETER	0.00	0.00	0.00	%		V0	W4
431	lz	LINK	31	DIAMETER	0	1276	0			V0	W2
432	m0	TORQUE CALC.		TORQUE DEMAND	-200.00	200.00	0.00	%		V1	W0
433	m1	TORQUE CALC.		TENSION ENABLE	0	1	1		0: DISABLED 1: ENABLED	V1	W0

Tag	Mn	MMI Block Name		MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Not	es
434	m2	TORQUE CALC.		OVER WIND	0	1	1		0: DISABLED 1: ENABLED	V1	W0
435	m3	LINK	32	POS. I CLAMP	0	1276	0			V0	W2
436	m4	LINK	33	NEG. I CLAMP	0	1276	0			V0	W2
437	m5	DIAMETER CALC.		REEL SPEED	-105.00	105.00	0.00	%		V1	W0
438	m6	DIAMETER CALC.		TAPER	-100.00	100.00	0.00	%		V1	W0
439	m7	DIAMETER CALC.		TENSION SPT.	0.00	100.00	0.00	%		V1	W0
440	m8	DIAMETER CALC.		TENSION TRIM	-100.00	100.00	0.00	%		V1	W0
441	m9	DIAMETER CALC.		TOT.TENS.DEMAND	0.00	0.00	0.00	%		V1	W4
442	ma	LINK	34	TAPER	0	1276	0			V0	W2
443	mb	SETPOINT SUM	2	INPUT 1	-300.00	300.00	0.00	%		V1	W0
444	mc	SETPOINT SUM	2	INPUT 0	-300.00	300.00	0.00	%		V1	W0
445	md	SETPOINT SUM	2	INPUT 2	-300.00	300.00	0.00	%		V1	W0
446	me	SETPOINT SUM	2	RATIO 1	-3.0000	3.0000	1.0000			V0	W0
447	mf	SETPOINT SUM	2	RATIO 0	-3.0000	3.0000	1.0000			V0	W0
448	mg	SETPOINT SUM	2	DIVIDER 0	-3.0000	3.0000	1.0000			V0	W0
449	mh	SETPOINT SUM	2	LIMIT	0.00	200.00	105.00	%		V0	W0
450	mi	LINK	35	SETPOINT SUM 2	0	1276	0			V0	W2
451	mj	SETPOINT SUM	2	SPT SUM OUTPUT	0.00	0.00	0.00	%		V1	W4
452	mk	DIAMETER CALC.		TAPERED DEMAND	0.00	0.00	0.00	%		V1	W4
453	ml	DIAMETER CALC.		RAMP RATE	0.1	600.0	5.0	s		V1	W0
454	mm	LINK	5	SOURCE TAG	-1276	1276	0			V0	W2
455	mn	LINK	5	DESTINATION TAG	0	1276	0			V0	W2
456	mo	LINK	6	SOURCE TAG	-1276	1276	0			V0	W2
457	mp	LINK	6	DESTINATION TAG	0	1276	0			V0	W2
458	mq	LINK	7	SOURCE TAG	-1276	1276	0			V0	W2
459	mr	LINK	7	DESTINATION TAG	0	1276	0			V0	W2
460	ms	LINK	8	SOURCE TAG	-1276	1276	0			V0	W2
461	mt	LINK	8	DESTINATION TAG	0	1276	0			V0	W2
462	mu	DIAMETER CALC.		RESET VALUE	0.00	100.00	10.00	%		V1	W0
463	mv	DIAMETER CALC.		EXTERNAL RESET	0	1	0		0: DISABLED 1: ENABLED	V1	W0
464	mw	ANALOG OUTPUT	1	OFFSET	-100.00	100.00	0.00	%		V0	W0
465	mx	ANALOG OUTPUT	2	OFFSET	-100.00	100.00	0.00	%		V0	W0

B-16 Parameter Specification Tables

Tag	Mn	MMI Block Name		MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Not	es
466	my	SETPOINT SUM	2	DIVIDER 1	-3.0000	3.0000	1.0000			V1	W0
467	mz	LINK	9	SOURCE TAG	-1276	1276	0			V0	W2
468	n0	LINK	9	DESTINATION TAG	0	1276	0			V0	W2
469	n1	LINK	10	SOURCE TAG	-1276	1276	0			V0	W2
470	n2	LINK	10	DESTINATION TAG	0	1276	0			V0	W2
472	n4	ALARMS		SPEED FBK STATE	0	1	0			V0	W4
473	n5	PROFILED GAIN		MODE	0	4	0			V1	W0
474	n6	PROFILED GAIN		MIN PROFILE GAIN	0.00	100.00	20.00	%		V1	W0
475	n7	PROFILED GAIN		PROFILED GAIN	0.0	0.0	0.0			V1	W4
478	na	LINK	36	TENS+COMP CALC.	0	1276	0			V0	W2
479	nb	DIAMETER CALC.		FIX.INERTIA COMP	-300.00	300.00	0.00	%		V1	W0
480	nc	DIAMETER CALC.		VAR.INERTIA COMP	-300.00	300.00	0.00	%		V1	W0
481	nd	DIAMETER CALC.		ROLL WIDTH/MASS	0.00	100.00	100.00	%		V1	W0
482	ne	DIAMETER CALC.		FILTER T.C.	0	20000	10			V1	W0
483	nf	DIAMETER CALC.		RATE CAL	-100.00	100.00	10.00			V1	W0
484	ng	DIAMETER CALC.		NORMALISED dv/dt	-300.00	300.00	0.00	%		V1	W0
485	nh	DIAMETER CALC.		INERTIA COMP O/P	0.00	0.00	0.00	%		V1	W4
486	ni	DIAMETER CALC.		TENSION SCALER	-3.0000	3.0000	1.0000			V1	W0
487	nj	DIAMETER CALC.		STATIC COMP	-300.00	300.00	0.00	%		V0	W0
488	nk	DIAMETER CALC.		DYNAMIC COMP	-300.00	300.00	0.00	%		V0	W0
489	nl	DIAMETER CALC.		REWIND	0	1	1		0: DISABLED 1: ENABLED	V0	W0
491	nn	SETPOINT SUM	2	STPT SUM 2 OUT 0	0.00	0.00	0.00	%		V0	W4
492	no	SETPOINT SUM	2	STPT SUM 2 OUT 1	0.00	0.00	0.00	%		V0	W4
493	np	ANALOG INPUT	2	OUTPUT	0.00	0.00	0.00	%		V0	W4
494	nq	LINK	37	DESTINATION TAG	0	1276	496			V0	W2
495	nr	LINK	38	DESTINATION TAG	0	1276	497			V0	W2
496	ns	SEQUENCING		JOG/SLACK	0	1	0		0: OFF 1: ON	V0	W0
497	nt	SEQUENCING		ENABLE	0	1	0		0: OFF 1: ON	V0	W0
498	nu	DIAMETER CALC.		LINE SPEED SPT	-105.00	105.00	0.00	%		V0	W0

Tag	Mn	MMI Block Name	MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Not	tes
500	nw	TEC OPTION	TEC OPTION TYPE	0	15	0		0: NONE 1: RS485 2: PROFIBUS DP	V0	Wo
501	nx	TEC OPTION	TEC OPTION IN 1	-32768	32767	0			V0	W0
502	ny	TEC OPTION	TEC OPTION IN 2	-32768	32767	0			V0	W0
503	nz	TEC OPTION	TEC OPTION IN 3	-32768	32767	0			V0	W0
504	00	TEC OPTION	TEC OPTION IN 4	-32768	32767	0			V0	W0
505	ol	TEC OPTION	TEC OPTION IN 5	-32768	32767	0			V0	W0
506	02	TEC OPTION	TEC OPTION FAULT	0	5	0		0: NONE 1: PARAMETER 2: TYPE MISMATCH 3: SELF TEST 4: HARDWARE 5: MISSING	V0	W4
507	03	TEC OPTION	TEC OPTION VER	0x0000	0xFFFF	0x0000			V0	W4
508	o4	TEC OPTION	TEC OPTION OUT 1	0	0	0			V0	W4
509	05	TEC OPTION	TEC OPTION OUT 2	0	0	0			V0	W4
510	06	DRIVE INFO	PRODUCT CODE	0	104	3		0: INVALID 1: DC 4Q 20A 2: DC 2Q 20A 3: DC 4Q 35A 4: DC 2Q 35A 5: DC 4Q 40A 6: DC 2Q 40A 7: DC 4Q 60A 8: DC 2Q 60A	V0	W3

B-18 Parameter Specification Tables

Tag	Mn	MMI Block Name	MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Notes
								9: DC 4Q 80A	
								10: DC 2Q 80A	
								11: DC 4Q 90A	
								12: DC 2Q 90A	
								13: DC 4Q 120A	
								14: DC 2Q 120A	
								15: DC 4Q 125A	
								16: DC 2Q 125A	
								17: DC 4Q 162A	
								18: DC 2Q 162A	
								19: DC 4Q 160A	
								20: DC 2Q 160A	
								21: DC 4Q 35A D	
								22: DC 2Q 35A D	
								23: DC 4Q 80A D	
								24: DC 2Q 80A D	
								25: DC 4Q 120A D	
								26: DC 2Q 120A D	
								27: DC 4Q 160A D	
								28: DC 2Q 160A D	
								29: DC 4Q 200A D	
								30: DC 2Q 200A D	
								31: DC 4Q 280A D	
								32: DC 2Q 280A D	
								33: DC 4Q 128* 20* D	
								34: DC 2Q 128* 20* D	
								35: DC 4Q 1024* 20*D	
								36: DC 2Q 1024* 20*D	
								37: DC 4Q 1024* 26*D	
								38: DC 2Q 1024* 26*D	
								39: DC 4Q 360A D	
								40: DC 2Q 360A D	
								41: DC 4Q 450A D	
								42: DC 2Q 450A D	
								43: DC 4Q 750A D	
								44: DC 2Q 750A D	
								45: DC 4Q 850A D	
								46: DC 2Q 850A D	
								47: DC 4Q 1024* 30*D	
								48: DC 2Q 1024* 30*D	
								49: DC 4Q 1200A 20 D	

Tag	Mn	MMI Block Name	MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Notes
								50: DC 2Q 1200A 20 D	
								51: DC 4Q 1700A 20 D	
								52: DC 2Q 1700A 20 D	
								53: DC 4Q 2200A 20 D	
								54: DC 2Q 2200A 20 D	
								55: DC 4Q 2700A 20 D	
								56: DC 2Q 2700A 20 D	
								57: DC 4Q 1200A 40 D	
								58: DC 2Q 1200A 40 D	
								59: DC 4Q 1700A 40 D	
								60: DC 2Q 1700A 40 D	
								61: DC 4Q 2200A 40 D	
								62: DC 2Q 2200A 40 D	
								63: DC 4Q 2700A 40 D	
								64: DC 2Q 2700A 40 D	
								65: DC 4Q 1200A 60 D	
								66: DC 2Q 1200A 60 D	
								67: DC 4Q 1700A 60 D	
								68: DC 2Q 1700A 60 D	
								69: DC 4Q 2200A 60 D	
								70: DC 2Q 2200A 60 D	
								71: DC 4Q 2700A 60 D	
								72: DC 2Q 2700A 60 D	
								73: DC 4Q 1200A 80 D	
								74: DC 2Q 1200A 80 D	
								75: DC 4Q 1700A 80 D	
								76: DC 2Q 1700A 80 D	
								77: DC 4Q 2200A 80 D	
								78: DC 2Q 2200A 80 D	
								79: DC 4Q 2700A 80 D	
								80: DC 2Q 2700A 80 D	
								81: DC RETRO 4Q 128A	
								82: DC RETRO 2Q 128A	
								83: DC 2Q 40A	
								84: DC 4Q 40A	
								85: DC 4Q 750A	
								86: DC 2Q 750A	
								87: DC 4Q 850A	
								88: DC 2Q 850A	
								89: DC 4Q 1580A	
								90: DC 2Q 1580A	

B-20 Parameter Specification Tables

Tag	Mn	MMI Block Name	MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Not	tes
								91: DC 4Q 400A		
								92: DC 2Q 400A		
								93: DC 4Q 550A		
								94: DC 2Q 550A		
								95: DC 4Q 750A 40*D 96: DC 2Q 750A 40*D		
								97: DC 4Q 850A 40*D		
								98: DC 2Q 850A 40*D		
								99: DC 4Q 1580A 40*D		
								100: DC 2Q 1580A 40*D		
								101: DC 4Q 400A 40*D		
								102: DC 2Q 400A 40*D		
								103: DC 4Q 550A 40*D 104: DC 2Q 550A 40*D		
511	07	OP-STATION	LOCAL KEY ENABLE	0	1	1		104. DC 2Q 330A 40 D	1/0	W0
512	08	OP-STATION OP-STATION	SETPOINT	0.00	100.00	0.00	%		$\frac{V0}{V0}$	
513	09	OP-STATION	JOG SETPOINT	0.00	100.00	5.00	%		V0	
514	oa	OP-STATION	RAMP ACCEL TIME	0.1	600.0	10.0	s		V0	
515	ob	OP-STATION	RAMP DECEL TIME	0.1	600.0	10.0	s		V0	
516	oc	OP-STATION	INITIAL DIR	0.1	1	1		0: REVERSE	V0	
								1: FORWARD		'
517	od	OP-STATION	INITIAL MODE	0	1	0		0: REMOTE	V0	W0
								1: LOCAL		
518	oe	OP-STATION	INITIAL VIEW	0	1	0		0: LOCAL	V0	W0
510		OD CT ATION	DHTHAL CETTODIT	0.00	100.00	0.00	0./	1: PROGRAM	170	1170
519	of	OP-STATION	INITIAL SETPOINT	0.00	100.00	0.00	%			W0
520	og	OP-STATION	INITIAL JOG	0.00	100.00 875	5.00	% V			W0
521	oh ·	CONFIGURE DRIVE	NOM MOTOR VOLTS	100		100			V0	
523 524	oj	CONFIGURE DRIVE CONFIGURE DRIVE	ARMATURE CURRENT FIELD CURRENT	0.2	35.0 4.0	0.2	A		V0 V0	
525	ok	SEQUENCING	COAST STOP	0.2	4.0	0.2	A		V0	
527	ol	CURRENT LOOP	MASTER BRIDGE	0	1	0			VO	
528	on	ALARMS	LAST ALARM	0x0000	0xFFFF	0x0000			V0	
535	00	SEQUENCING	REM.SEQ.ENABLE	0	1	0			VO	
536	ov	SEQUENCING	REM.SEQUENCE	0x0000	0xFFFF	0x8000			$\frac{v_0}{V_1}$	W0
537	ow	SEQUENCING	SEQ STATUS	0x0000 0x0000	0xFFFF 0xFFFF	0x0000				W4
33/	ox	SEQUENCING	SEQ STATUS	UXUUUU	UXLLLL	UXUUUU			VU	VV 4

Tag	Mn	MMI Block Name	MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Note	es
538	oy	CURRENT LOOP	CURRENT FBK.AMPS	0.0	0.0	0.0	A		V0	W4
539	oz	FIELD CONTROL	FIELD I FBK.AMPS	0.0	0.0	0.0	A		V0	W4
540	p0	ALARMS	REM TRIP INHIBIT	0	1	0		0: ENABLED 1: INHIBITED	V0	W0
541	p1	ALARMS	REM TRIP DELAY	0.1	600.0	10.0	S		V0	W0
542	p2	ALARMS	REMOTE TRIP	0	1	0			V0	W4
545	p5	DRIVE INFO	PCODE ID	0	255	3			V0	W2
547	p7	SPEED LOOP	SPD.FBK.FILTER	0.000	1.000	0.000			V0	W0
549	p9	SPEED LOOP	SPEED LOOP O/P	0.00	0.00	0.00	%		V0	W4
556	pg	INERTIA COMP	INERTIA	0.00	200.00	0.00			V0	W0
557	ph	INERTIA COMP	FILTER	0	20000	0			V0	W0
558	pi	INERTIA COMP	RATE CAL	0.00	200.00	100.00			V0	W0
559	рj	PRESET SPEEDS	MAX SPEED	0.1	3000.0	100.0	%		V0	W0
560	pk	PRESET SPEEDS	SELECT 1	0	1	0			V0	W0
561	pl	PRESET SPEEDS	SELECT 2	0	1	0			V0	W0
562	pm	PRESET SPEEDS	SELECT 3	0	1	0			V0	W0
563	pn	PRESET SPEEDS	INVERT O/P	0	1	0			V0	W0
564	ро	PRESET SPEEDS	INPUT 0	-3000.0	3000.0	0.0			V0	W0
565	pp	PRESET SPEEDS	INPUT 1	-3000.0	3000.0	0.0			V0	W0
566	pq	PRESET SPEEDS	INPUT 2	-3000.0	3000.0	0.0			V0	W0
567	pr	PRESET SPEEDS	INPUT 3	-3000.0	3000.0	0.0			V0	W0
568	ps	PRESET SPEEDS	INPUT 4	-3000.0	3000.0	0.0			V0	W0
569	pt	PRESET SPEEDS	INPUT 5	-3000.0	3000.0	0.0			V0	W0
570	pu	PRESET SPEEDS	INPUT 6	-3000.0	3000.0	0.0			V0	W0
571	pv	PRESET SPEEDS	INPUT 7	-3000.0	3000.0	0.0			V0	W0
572	pw	PRESET SPEEDS	PRESET O/P	0.00	0.00	0.00	%		V0	W4
573	px	LINK 39	PRESET DEST	0	1276	0			V0	W2
574	ру	SRAMP	INPUT	-100.00	100.00	0.00	%		V0	W0
575	pz	SRAMP	RATE SELECT	0	1	0			V0	W0
576	q0	SRAMP	ACCEL 0	0.00	100.00	60.00	%		V0	W0
577	q1	SRAMP	DECEL 0	0.00	100.00	60.00	%		V0	W0
578	q2	SRAMP	ACCEL 0 JERK 1	0.00	100.00	20.00	%		V0	W0
579	q3	SRAMP	ACCEL 1	0.00	100.00	30.00	%		V0	W0
580	q4	SRAMP	DECEL 1	0.00	100.00	30.00	%		V0	W0

B-22 Parameter Specification Tables

Tag	Mn	MMI Block Name	MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Notes	S
581	q5	SRAMP	ACCEL 1 JERK 1	0.00	100.00	20.00	%		V0 V	W0
582	q6	SRAMP	AUTO RESET	0	1	1			V0 V	W0
583	q7	SRAMP	EXTERNAL RESET	0	1	0			V0 V	W0
584	q8	SRAMP	RESET VALUE	-100.00	100.00	0.00	%		V0 V	W0
585	q9	SRAMP	QUENCH	0	1	0			V0 V	W0
586	qa	SRAMP	AT SPEED LEVEL	0.00	100.00	1.00	%		V0 V	W0
587	qb	SRAMP	AT SPEED	0	1	0			V0 V	W4
588	qc	SRAMP	ACCEL OUTPUT	0.00	0.00	0.00	%		V0 V	W4
589	qd	SRAMP	SRAMP OUTPUT	0.00	0.00	0.00	%		V0 V	W4
900	qe	LINK 40	SRAMP DEST	0	1276	0			V0 V	W2
593	qh	PRESET SPEEDS	OUTPUT FPM	0.0	0.0	0.0			V0 V	W4
594	qi	STOP RATES	CURR DECAY RATE	0.00	200.00	0.00			V0 V	W0
595	qj	SPEED LOOP	PRESET TORQUE	-250.00	250.00	0.00	%		V0 V	W0
596	qk	SRAMP	DECEL 0 JERK 1	0.00	100.00	20.00	%		V0 V	W0
597	ql	SRAMP	DECEL 1 JERK 1	0.00	100.00	20.00	%		V0 V	W0
600	qo	PRESET SPEEDS	LIMIT	0	1	0			V0 V	W0
601	qp	INERTIA COMP	DELTA	0.00	0.00	0.00	%		V0 V	W4
602	qq	INERTIA COMP	INERTIA COMP O/P	0.00	0.00	0.00	%		V0 V	W4
603	qr	INERTIA COMP	UNSCALED OUTPUT	0.00	0.00	0.00	%		V0 V	W4
604	qs	SPEED LOOP	PRESET T SCALE	-200.00	200.00	100.00	%		V0 V	W0
605	qt	FEEDBACKS	ARM VOLTS FBK	0	0	0	V		V0 V	W4
609	qx	AUTOTUNE	METHOD	0	1	0		0: 4Q MULTI 1: 2Q MULTI	V1 V	W1
610	qy	PRESET SPEEDS	GRAY SCALE	0	1	0			V0 V	W0
611	qz	SRAMP	ACCEL 0 JERK 2	0.00	100.00	20.00	%		V0 V	W0
612	r0	SRAMP	ACCEL 1 JERK 2	0.00	100.00	20.00	%		V0 V	W0
613	r1	SRAMP	DECEL 0 JERK 2	0.00	100.00	20.00	%		V0 V	W0
614	r2	SRAMP	DECEL 1 JERK 2	0.00	100.00	20.00	%		V0 V	W0
617	r5	FIELD CONTROL	FIELD I THRESH	0.00	100.00	80.00	%		V0 V	W0
618	r6	FIELD CONTROL	UP TO FIELD	0	1	0			V0 V	W4
620	r8	RAMPS	INVERT	0	1	0			V0 V	W0
626	re	DRIVE INFO	FRAME ID	0	0	0			V0 V	W4
628	rg	CONFIGURE DRIVE	UDP USE OP PORT	0	1	0			V0 V	W0
629	rh	LINK 13	DESTINATION TAG	0	1276	683			V0 V	W2

Tag	Mn	MMI Block Nai	MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Notes
630	ri	LINK 14	DESTINATION TAG	0	1276	684			V0 W2
631	rj	LINK 15	DESTINATION TAG	0	1276	685			V0 W2
632	rk	LINK 17	DESTINATION TAG	0	1276	678			V0 W2
633	rl	LINK 18	DESTINATION TAG	0	1276	679			V0 W2
634	rm	LINK 19	DESTINATION TAG	0	1276	699			V0 W2
635	rn	LINK 20	SOURCE TAG	-1276	1276	680			V0 W2
636	ro	LINK 21	SOURCE TAG	-1276	1276	681			V0 W2
637	rp	LINK 22	SOURCE TAG	-1276	1276	682			V0 W2
638	rq	LINK 23	SOURCE TAG	-1276	1276	674			V0 W2
639	rr	LINK 24	SOURCE TAG	-1276	1276	675			V0 W2
640	rs	LINK 25	SOURCE TAG	-1276	1276	676			V0 W2
641	rt	LINK 26	SOURCE TAG	-1276	1276	677			V0 W2
642	ru	LINK 27	SOURCE TAG	-1276	1276	264			V0 W2
643	rv	LINK 28	SOURCE TAG	-1276	1276	85			V0 W2
644	rw	LINK 29	SOURCE TAG	-1276	1276	86			V0 W2
645	rx	LINK 30	SOURCE TAG	-1276	1276	417			V0 W2
646	ry	LINK 31	SOURCE TAG	-1276	1276	427			V0 W2
647	rz	LINK 32	SOURCE TAG	-1276	1276	707			V0 W2
648	s0	LINK 33	SOURCE TAG	-1276	1276	708			V0 W2
649	s1	LINK 34	SOURCE TAG	-1276	1276	441			V0 W2
650	s2	LINK 35	SOURCE TAG	-1276	1276	451			V0 W2
651	s3	LINK 36	SOURCE TAG	-1276	1276	706			V0 W2
652	s4	LINK 37	SOURCE TAG	-1276	1276	69			V0 W2
653	s5	LINK 38	SOURCE TAG	-1276	1276	70			V0 W2
654	s6	LINK 39	SOURCE TAG	-1276	1276	572			V0 W2
655	s7	LINK 40	SOURCE TAG	-1276	1276	589			V0 W2
656	s8	LINK 41	DESTINATION TAG	0	1276	687			V0 W2
657	s9	LINK 42	DESTINATION TAG	0	1276	689			V0 W2
658	sa	LINK 43	SOURCE TAG	-1276	1276	712			V0 W2
660	sc	LINK 44	SOURCE TAG	-1276	1276	713			V0 W2
662	se	LINK 45	SOURCE TAG	-1276	1276	189			V0 W2
664	sg	LINK 46	SOURCE TAG	-1276	1276	700			V0 W2
665	sh	LINK 46	DESTINATION TAG	0	1276	701			V0 W2

B-24 Parameter Specification Tables

Tag	Mn	MMI Block Name		MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Note	ès
666	si	LINK	47	SOURCE TAG	-1276	1276	427			V0	W2
667	sj	LINK	47	DESTINATION TAG	0	1276	709			V0	W2
668	sk	LINK	48	SOURCE TAG	-1276	1276	425			V0	W2
669	sl	LINK	48	DESTINATION TAG	0	1276	710			V0	W2
670	sm	LINK	49	SOURCE TAG	-1276	1276	691			V0	W2
671	sn	LINK	49	DESTINATION TAG	0	1276	697			V0	W2
672	so	LINK	50	SOURCE TAG	-1276	1276	475			V0	W2
673	sp	LINK	50	DESTINATION TAG	0	1276	711			V0	W2
674	sq	ANALOG INPUT	1	OUTPUT	0.00	0.00	0.00	%		V0	W4
675	sr	ANALOG INPUT	3	OUTPUT	0.00	0.00	0.00	%		V0	W4
676	SS	ANALOG INPUT	4	OUTPUT	0.00	0.00	0.00	%		V0	W4
677	st	ANALOG INPUT	5	OUTPUT	0.00	0.00	0.00	%		V0	W4
678	su	ANALOG OUTPUT	1	INPUT	-300.00	300.00	0.00	%		V0	W0
679	sv	ANALOG OUTPUT	2	INPUT	-300.00	300.00	0.00	%		V0	W0
680	sw	DIGITAL INPUT	1	OUTPUT	0.00	0.00	0.00	%		V0	W4
681	SX	DIGITAL INPUT	2	OUTPUT	0.00	0.00	0.00	%		V0	W4
682	sy	DIGITAL INPUT	3	OUTPUT	0.00	0.00	0.00	%		V0	W4
683	SZ	DIGITAL OUTPUT	1	INPUT	-300.00	300.00	0.00	%		V0	W0
684	t0	DIGITAL OUTPUT	2	INPUT	-300.00	300.00	0.00	%		V0	W0
685	t1	DIGITAL OUTPUT	3	INPUT	-300.00	300.00	0.00	%		V0	W0
686	t2	ADVANCED	1	INPUT 1	-32768.00	32768.00	0.00	%		V0	W0
687	t3	ADVANCED	1	INPUT 2	-32768.00	32768.00	0.00	%		V0	W0
688	t4	ADVANCED	2	INPUT 1	-32768.00	32768.00	0.00	%		V0	W0
689	t5	ADVANCED	2	INPUT 2	-32768.00	32768.00	0.00	%		V0	W0
691	t7	MIN SPEED		OUTPUT	0.00	0.00	0.00	%		V1	W4
693	t9	COMMS PORT	1	ERROR REPORT	0x0000	0xFFFF	0x00C0			V0	W0
697	td	RAMPS		RAMP INPUT	-105.00	105.00	0.00	%		V1	W0
698	te	JOG/SLACK		JOG/SLACK	0.00	0.00	0.00	%		V1	W4
699	tf	STANDSTILL		INPUT	-300.00	300.00	0.00	%		V0	W0
700	tg	DEADBAND		OUTPUT	0.00	0.00	0.00	%		V1	W4
701	th	SETPOINT SUM	1	INPUT 1	-300.00	300.00	0.00	%		V1	W0
702	ti	SETPOINT SUM	1	OUTPUT 1	0.00	0.00	0.00	%		V0	W4
703	tj	SETPOINT SUM	1	OUTPUT 0	0.00	0.00	0.00	%		V0	W4

Tag	Mn	MMI Block Name		MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Not	tes
704	tk	SETPOINT SUM	2	SIGN 1	0	1	1		0: NEGATIVE 1: POSITIVE	V1	W0
705	tl	SETPOINT SUM	2	SIGN 0	0	1	1		0: NEGATIVE 1: POSITIVE	V1	W0
706	tm	DIAMETER CALC.		OUTPUT	0.00	0.00	0.00	%		V1	W4
707	tn	TORQUE CALC.		POS. I CLAMP	0.00	0.00	0.00	V		V0	W4
708	to	TORQUE CALC.		NEG. I CLAMP	0.00	0.00	0.00	V		V0	W4
709	tp	PROFILED GAIN		DIAMETER	0.00	100.00	10.00	%		V1	W0
710	tq	PROFILED GAIN		MIN DIAMETER	0.00	100.00	10.00	%		V1	W0
711	tr	PID		PROP. GAIN	0.0	100.0	1.0			V1	W0
712	ts	ADVANCED	1	OUTPUT	0.00	0.00	0.00	V		V0	W4
713	tt	ADVANCED	2	OUTPUT	0.00	0.00	0.00	V		V0	W4
714	tu	OUT		INPUT	-300.00	300.00	0.00	%		V0	W0
720	u0	LINK	51	SOURCE TAG	-1276	1276	0			V0	W2
721	u1	LINK	51	DESTINATION TAG	0	1276	0			V0	W2
722	u2	LINK	52	SOURCE TAG	-1276	1276	0			V0	W2
723	u3	LINK	52	DESTINATION TAG	0	1276	0			V0	W2
724	u4	LINK	53	SOURCE TAG	-1276	1276	0			V0	W2
725	u5	LINK	53	DESTINATION TAG	0	1276	0			V0	W2
726	u6	LINK	54	SOURCE TAG	-1276	1276	0			V0	W2
727	u7	LINK	54	DESTINATION TAG	0	1276	0			V0	W2
728	u8	LINK	55	SOURCE TAG	-1276	1276	0			V0	W2
729	u9	LINK	55	DESTINATION TAG	0	1276	0			V0	W2
730	ua	LINK	56	SOURCE TAG	-1276	1276	0			V0	W2
731	ub	LINK	56	DESTINATION TAG	0	1276	0			V0	W2
732	uc	LINK	57	SOURCE TAG	-1276	1276	0			V0	W2
733	ud	LINK	57	DESTINATION TAG	0	1276	0			V0	W2
734	ue	LINK	58	SOURCE TAG	-1276	1276	0			V0	W2
735	uf	LINK	58	DESTINATION TAG	0	1276	0			V0	W2
736	ug	LINK	59	SOURCE TAG	-1276	1276	0			V0	W2
737	uh	LINK	59	DESTINATION TAG	0	1276	0			V0	W2
738	ui	LINK	60	SOURCE TAG	-1276	1276	0			V0	W2
739	uj	LINK	60	DESTINATION TAG	0	1276	0			V0	W2
740	uk	LINK	61	SOURCE TAG	-1276	1276	0			V0	W2

B-26 Parameter Specification Tables

Tag	Mn	MMI Block Nai	MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Notes
741	ul	LINK 61	DESTINATION TAG	0	1276	0			V0 W2
742	um	LINK 62	SOURCE TAG	-1276	1276	0			V0 W2
743	un	LINK 62	DESTINATION TAG	0	1276	0			V0 W2
744	uo	LINK 63	SOURCE TAG	-1276	1276	0			V0 W2
745	up	LINK 63	DESTINATION TAG	0	1276	0			V0 W2
746	uq	LINK 64	SOURCE TAG	-1276	1276	0			V0 W2
747	ur	LINK 64	DESTINATION TAG	0	1276	0			V0 W2
748	us	LINK 65	SOURCE TAG	-1276	1276	0			V0 W2
749	ut	LINK 65	DESTINATION TAG	0	1276	0			V0 W2
750	uu	LINK 66	SOURCE TAG	-1276	1276	0			V0 W2
751	uv	LINK 66	DESTINATION TAG	0	1276	0			V0 W2
752	uw	LINK 67	SOURCE TAG	-1276	1276	0			V0 W2
753	ux	LINK 67	DESTINATION TAG	0	1276	0			V0 W2
754	uy	LINK 68	SOURCE TAG	-1276	1276	0			V0 W2
755	uz	LINK 68	DESTINATION TAG	0	1276	0			V0 W2
756	v0	LINK 69	SOURCE TAG	-1276	1276	0			V0 W2
757	v1	LINK 69	DESTINATION TAG	0	1276	0			V0 W2
758	v2	LINK 70	SOURCE TAG	-1276	1276	0			V0 W2
759	v3	LINK 70	DESTINATION TAG	0	1276	0			V0 W2
760	v4	LINK 71	SOURCE TAG	-1276	1276	0			V0 W2
761	v5	LINK 71	DESTINATION TAG	0	1276	0			V0 W2
762	v6	LINK 72	SOURCE TAG	-1276	1276	0			V0 W2
763	v7	LINK 72	DESTINATION TAG	0	1276	0			V0 W2
764	v8	LINK 73	SOURCE TAG	-1276	1276	0			V0 W2
765	v9	LINK 73	DESTINATION TAG	0	1276	0			V0 W2
766	va	LINK 74	SOURCE TAG	-1276	1276	0			V0 W2
767	vb	LINK 74	DESTINATION TAG	0	1276	0			V0 W2
768	vc	LINK 75	SOURCE TAG	-1276	1276	0			V0 W2
769	vd	LINK 75	DESTINATION TAG	0	1276	0			V0 W2
770	ve	LINK 76	SOURCE TAG	-1276	1276	0			V0 W2
771	vf	LINK 76	DESTINATION TAG	0	1276	0			V0 W2
772	vg	LINK 77	SOURCE TAG	-1276	1276	0			V0 W2
773	vh	LINK 77	DESTINATION TAG	0	1276	0			V0 W2

Tag	Mn	MMI Block Name		MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Not	es
774	vi	LINK	78	SOURCE TAG	-1276	1276	0			V0	W2
775	vj	LINK	78	DESTINATION TAG	0	1276	0			V0	W2
776	vk	LINK	79	SOURCE TAG	-1276	1276	0			V0	W2
777	vl	LINK	79	DESTINATION TAG	0	1276	0			V0	W2
778	vm	LINK	80	SOURCE TAG	-1276	1276	0			V0	W2
779	vn	LINK	80	DESTINATION TAG	0	1276	0			V0	W2
780	vo	LOGIC FUNC	1	INPUT A	0	1	0			V0	W0
781	vp	LOGIC FUNC	1	INPUT B	0	1	0			V0	W0
782	vq	LOGIC FUNC	1	INPUT C	0	1	0			V0	W0
783	vr		1	ТҮРЕ	0	15	0		0: NOT(A) 1: AND(A,B,C) 2: NAND(A,B,C) 3: OR(A,B,C) 4: NOR(A,B,C) 5: XOR(A,B) 6: 0-1 EDGE(A) 7: 1-0 EDGE(A) 8: AND(A,B,!C) 9: OR(A,B,!C) 10: S FLIP-FLOP 11: R FLIP-FLOP 12: LATCH 13: SWITCH 14: (A AND B) OR C 15: (A OR B) AND C		
784	vs	LOGIC FUNC	1	OUTPUT	0	1	0			V0	W4
785	vt	LOGIC FUNC	2	INPUT A	0	1	0			V0	W0
786	vu	LOGIC FUNC	2	INPUT B	0	1	0			V0	W0
787	vv	LOGIC FUNC	2	INPUT C	0	1	0			V0	W0
788	vw	LOGIC FUNC	2	ТҮРЕ	0	15	0		See Tag 783	V0	W0
789	VX	LOGIC FUNC	2	OUTPUT	0	1	0			V0	W4
790	vy	LOGIC FUNC	3	INPUT A	0	1	0			V0	W0
791	VZ	LOGIC FUNC	3	INPUT B	0	1	0			V0	W0
792	w0	LOGIC FUNC	3	INPUT C	0	1	0			V0	W0
793	w1	LOGIC FUNC	3	ТҮРЕ	0	15	0		See Tag 783	V0	W0
794	w2	LOGIC FUNC	3	OUTPUT	0	1	0			V0	W4

B-28 Parameter Specification Tables

Tag	Mn	MMI Block Name		MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Notes
795	w3	LOGIC FUNC	4	INPUT A	0	1	0			V0 W0
796	w4	LOGIC FUNC	4	INPUT B	0	1	0			V0 W0
797	w5	LOGIC FUNC	4	INPUT C	0	1	0			V0 W0
798	w6	LOGIC FUNC	4	TYPE	0	15	0		See Tag 783	V0 W0
799	w7	LOGIC FUNC	4	OUTPUT	0	1	0			V0 W4
800	w8	LOGIC FUNC	5	INPUT A	0	1	0			V0 W0
801	w9	LOGIC FUNC	5	INPUT B	0	1	0			V0 W0
802	wa	LOGIC FUNC	5	INPUT C	0	1	0			V0 W0
803	wb	LOGIC FUNC	5	ТҮРЕ	0	15	0		See Tag 783	V0 W0
804	wc	LOGIC FUNC	5	OUTPUT	0	1	0			V0 W4
805	wd	LOGIC FUNC	6	INPUT A	0	1	0			V0 W0
806	we	LOGIC FUNC	6	INPUT B	0	1	0			V0 W0
807	wf	LOGIC FUNC	6	INPUT C	0	1	0			V0 W0
808	wg	LOGIC FUNC	6	ТҮРЕ	0	15	0		See Tag 783	V0 W0
809	wh	LOGIC FUNC	6	OUTPUT	0	1	0			V0 W4
810	wi	LOGIC FUNC	7	INPUT A	0	1	0			V0 W0
811	wj	LOGIC FUNC	7	INPUT B	0	1	0			V0 W0
812	wk	LOGIC FUNC	7	INPUT C	0	1	0			V0 W0
813	wl	LOGIC FUNC	7	TYPE	0	15	0		See Tag 783	V0 W0
814	wm	LOGIC FUNC	7	OUTPUT	0	1	0			V0 W4
815	wn	LOGIC FUNC	8	INPUT A	0	1	0			V0 W0
816	wo	LOGIC FUNC	8	INPUT B	0	1	0			V0 W0
817	wp	LOGIC FUNC	8	INPUT C	0	1	0			V0 W0
818	wq	LOGIC FUNC	8	TYPE	0	15	0		See Tag 783	V0 W0
819	wr	LOGIC FUNC	8	OUTPUT	0	1	0			V0 W4
820	ws	LOGIC FUNC	9	INPUT A	0	1	0			V0 W0
821	wt	LOGIC FUNC	9	INPUT B	0	1	0			V0 W0
822	wu	LOGIC FUNC	9	INPUT C	0	1	0			V0 W0
823	wv	LOGIC FUNC	9	TYPE	0	15	0		See Tag 783	V0 W0
824	ww	LOGIC FUNC	9	OUTPUT	0	1	0			V0 W4
825	wx	LOGIC FUNC	10	INPUT A	0	1	0			V0 W0
826	wy	LOGIC FUNC	10	INPUT B	0	1	0			V0 W0
827	WZ	LOGIC FUNC	10	INPUT C	0	1	0			V0 W0

Tag	Mn	MMI Block Name	MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Not	es
828	x0	LOGIC FUNC 10	TYPE	0	15	0		See Tag 783	V0	W0
829	x1	LOGIC FUNC 10	OUTPUT	0	1	0			V0	W4
830	x2	VALUE FUNC 1	INPUT A	-32768.00	32768.00	0.00			V0	W0
831	x3	VALUE FUNC 1	INPUT B	-32768.00	32768.00	0.00			V0	W0
832	x4	VALUE FUNC 1	INPUT C	-32768.00	32768.00	0.00			V0	W0
833	x5	VALUE FUNC 1	TYPE		46			0: IF(C) -A 1: ABS(A+B+C) 2: SWITCH(A,B) 3: (A*B)/C 4: A+B+C 5: A-B-C 6: B<=A<=C 7: A>B+/-C 8: A>=B 9: ABS(A)>B+/-C 10: ABS(A)>=B 11: A(1+B) 12: IF(C) HOLD(A) 13: BINARY DECODE 14: ON DELAY 15: OFF DELAY 16: TIMER 17: MINIMUM PULSE 18: PULSE TRAIN 19: WINDOW 20: UP/DWN COUNTER 21: (A*B)/C ROUND 22: WINDOW NO HYST 23: WIND A>=B,A<=C 24: A<=B 25: ((A*B)/100)+C 26: MIN(A,B,C) 27: MAX(A,B,C) 28: PROFILE SQRT 29: PROFILE LINEAR 30: PROFILE x^2 31: PROFILE x^4 33: ON A>B, OFF A <c (a+b)="" 34:="" c<="" clamped="" td=""><td>VO</td><td>W0</td></c>	VO	W0

B-30 Parameter Specification Tables

Tag	Mn	MMI Block Name		MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Note	es
									35: (A-B) CLAMPED C 36: (A*B) CLAMPED C 37: (A/B) CLAMPED C 38: A>=B:A, A<=C:0 39: (A * B) + C 40: A * (B + C) 41: A * (B - C) 42: A * (1+B/C) 43: A * (1+(B * C)) 44: MONOSTABLE HIGH 45: MONOSTABLE LOW 46: FILTER		
834	x6	VALUE FUNC	1	OUTPUT	0.00	0.00	0.00			V0	W4
835	x7	VALUE FUNC	2	INPUT A	-32768.00	32768.00	0.00			V0	W0
836	x8	VALUE FUNC	2	INPUT B	-32768.00	32768.00	0.00			V0	W0
837	x9	VALUE FUNC	2	INPUT C	-32768.00	32768.00	0.00			V0	W0
838	xa	VALUE FUNC	2	TYPE	0	46	0		See Tag 833	V0	W0
839	xb	VALUE FUNC	2	OUTPUT	0.00	0.00	0.00			V0	W4
840	xc	VALUE FUNC	3	INPUT A	-32768.00	32768.00	0.00			V0	W0
841	xd	VALUE FUNC	3	INPUT B	-32768.00	32768.00	0.00			V0	W0
842	xe	VALUE FUNC	3	INPUT C	-32768.00	32768.00	0.00			V0	W0
843	xf	VALUE FUNC	3	ТҮРЕ	0	46	0		See Tag 833	V0	W0
844	xg	VALUE FUNC	3	OUTPUT	0.00	0.00	0.00			V0	W4
845	xh	VALUE FUNC	4	INPUT A	-32768.00	32768.00	0.00			V0	W0
846	xi	VALUE FUNC	4	INPUT B	-32768.00	32768.00	0.00			V0	W0
847	хj	VALUE FUNC	4	INPUT C	-32768.00	32768.00	0.00			V0	W0
848	xk	VALUE FUNC	4	TYPE	0	46	0		See Tag 833	V0	W0
849	xl	VALUE FUNC	4	OUTPUT	0.00	0.00	0.00			V0	W4
850	xm	VALUE FUNC	5	INPUT A	-32768.00	32768.00	0.00			V0	W0
851	xn	VALUE FUNC	5	INPUT B	-32768.00	32768.00	0.00			V0	W0
852	xo	VALUE FUNC	5	INPUT C	-32768.00	32768.00	0.00			V0	W0
853	xp	VALUE FUNC	5	TYPE	0	46	0		See Tag 833	V0	W0
854	xq	VALUE FUNC	5	OUTPUT	0.00	0.00	0.00			V0	W4
855	xr	VALUE FUNC	6	INPUT A	-32768.00	32768.00	0.00			V0	W0
856	xs	VALUE FUNC	6	INPUT B	-32768.00	32768.00	0.00			V0	W0

Tag	Mn	MMI Block Name		MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Notes
857	xt	VALUE FUNC	6	INPUT C	-32768.00	32768.00	0.00			V0 W0
858	xu	VALUE FUNC	6	TYPE	0	46	0		See Tag 833	V0 W0
859	XV	VALUE FUNC	6	OUTPUT	0.00	0.00	0.00			V0 W4
860	xw	VALUE FUNC	7	INPUT A	-32768.00	32768.00	0.00			V0 W0
861	XX	VALUE FUNC	7	INPUT B	-32768.00	32768.00	0.00			V0 W0
862	xy	VALUE FUNC	7	INPUT C	-32768.00	32768.00	0.00			V0 W0
863	XZ	VALUE FUNC	7	TYPE	0	46	0		See Tag 833	V0 W0
864	y0	VALUE FUNC	7	OUTPUT	0.00	0.00	0.00			V0 W4
865	y1	VALUE FUNC	8	INPUT A	-32768.00	32768.00	0.00			V0 W0
866	y2	VALUE FUNC	8	INPUT B	-32768.00	32768.00	0.00			V0 W0
867	у3	VALUE FUNC	8	INPUT C	-32768.00	32768.00	0.00			V0 W0
868	y4	VALUE FUNC	8	TYPE	0	46	0		See Tag 833	V0 W0
869	y5	VALUE FUNC	8	OUTPUT	0.00	0.00	0.00			V0 W4
870	у6	VALUE FUNC	9	INPUT A	-32768.00	32768.00	0.00			V0 W0
871	у7	VALUE FUNC	9	INPUT B	-32768.00	32768.00	0.00			V0 W0
872	y8	VALUE FUNC	9	INPUT C	-32768.00	32768.00	0.00			V0 W0
873	у9	VALUE FUNC	9	TYPE	0	46	0		See Tag 833	V0 W0
874	ya	VALUE FUNC	9	OUTPUT	0.00	0.00	0.00			V0 W4
875	yb	VALUE FUNC	10	INPUT A	-32768.00	32768.00	0.00			V0 W0
876	yc	VALUE FUNC	10	INPUT B	-32768.00	32768.00	0.00			V0 W0
877	yd	VALUE FUNC	10	INPUT C	-32768.00	32768.00	0.00			V0 W0
878	ye	VALUE FUNC	10	TYPE	0	46	0		See Tag 833	V0 W0
879	yf	VALUE FUNC	10	OUTPUT	0.00	0.00	0.00			V0 W4
880	уg	DEMULTIPLEXER		OUTPUT 0	0	1	0			V0 W4
881	yh	DEMULTIPLEXER		OUTPUT 1	0	1	0			V0 W4
882	yi	DEMULTIPLEXER		OUTPUT 2	0	1	0			V0 W4
883	уj	DEMULTIPLEXER		OUTPUT 3	0	1	0			V0 W4
884	yk	DEMULTIPLEXER		OUTPUT 4	0	1	0			V0 W4
885	yl	DEMULTIPLEXER		OUTPUT 5	0	1	0			V0 W4
886	ym	DEMULTIPLEXER		OUTPUT 6	0	1	0			V0 W4
887	yn	DEMULTIPLEXER		OUTPUT 7	0	1	0			V0 W4
888	yo	DEMULTIPLEXER		OUTPUT 8	0	1	0			V0 W4
889	ур	DEMULTIPLEXER		OUTPUT 9	0	1	0			V0 W4

B-32 Parameter Specification Tables

Tag	Mn	MMI Block Name	MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Notes
890	yq	DEMULTIPLEXER	OUTPUT 10	0	1	0			V0 W4
891	yr	DEMULTIPLEXER	OUTPUT 11	0	1	0			V0 W4
892	ys	DEMULTIPLEXER	OUTPUT 12	0	1	0			V0 W4
893	yt	DEMULTIPLEXER	OUTPUT 13	0	1	0			V0 W4
894	yu	DEMULTIPLEXER	OUTPUT 14	0	1	0			V0 W4
895	yv	DEMULTIPLEXER	OUTPUT 15	0	1	0			V0 W4
896	yw	DEMULTIPLEXER	INPUT	0x0000	0xFFFF	0x0000			V0 W0
897	yx	OUT	DELAY	0	1000	0	ms		V0 W0
1128	hK	MULTIPLEXER	OUTPUT	0x0000	0xFFFF	0x0000			V0 W4
1129	hL	MULTIPLEXER	INPUT 0	0	1	0			V0 W0
1130	hM	MULTIPLEXER	INPUT 1	0	1	0			V0 W0
1131	hN	MULTIPLEXER	INPUT 2	0	1	0			V0 W0
1132	hO	MULTIPLEXER	INPUT 3	0	1	0			V0 W0
1133	hP	MULTIPLEXER	INPUT 4	0	1	0			V0 W0
1134	hQ	MULTIPLEXER	INPUT 5	0	1	0			V0 W0
1135	hR	MULTIPLEXER	INPUT 6	0	1	0			V0 W0
1136	hS	MULTIPLEXER	INPUT 7	0	1	0			V0 W0
1137	hT	MULTIPLEXER	INPUT 8	0	1	0			V0 W0
1138	hU	MULTIPLEXER	INPUT 9	0	1	0			V0 W0
1139	hV	MULTIPLEXER	INPUT 10	0	1	0			V0 W0
1140	hW	MULTIPLEXER	INPUT 11	0	1	0			V0 W0
1141	hX	MULTIPLEXER	INPUT 12	0	1	0			V0 W0
1142	hY	MULTIPLEXER	INPUT 13	0	1	0			V0 W0
1143	hZ	MULTIPLEXER	INPUT 14	0	1	0			V0 W0
1144	iA	MULTIPLEXER	INPUT 15	0	1	0			V0 W0
1145	iB	SELECT 1	INPUT 0	-32768.00	32768.00	0.00			V0 W0
1146	iC	SELECT 1	INPUT 1	-32768.00	32768.00	0.00			V0 W0
1147	iD	SELECT 1	INPUT 2	-32768.00	32768.00	0.00			V0 W0
1148	iЕ	SELECT 1	INPUT 3	-32768.00	32768.00	0.00			V0 W0
1149	iF	SELECT 1	INPUT 4	-32768.00	32768.00	0.00			V0 W0
1150	iG	SELECT 1	INPUT 5	-32768.00	32768.00	0.00			V0 W0
1151	iH	SELECT 1	INPUT 6	-32768.00	32768.00	0.00			V0 W0
1152	iI	SELECT 1	INPUT 7	-32768.00	32768.00	0.00			V0 W0

Tag	Mn	MMI Block Name		MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Not	tes
1153	iJ	SELECT	1	SELECT	0	7	0			V0	W0
1154	iK	SELECT	1	OUTPUT 0	0.00	0.00	0.00			V0	W4
1155	iL	SELECT	1	OUTPUT 1	0.00	0.00	0.00			V0	W4
1156	iM	SELECT	2	INPUT 0	-32768.00	32768.00	0.00			V0	W0
1157	iN	SELECT	2	INPUT 1	-32768.00	32768.00	0.00			V0	W0
1158	iO	SELECT	2	INPUT 2	-32768.00	32768.00	0.00			V0	W0
1159	iP	SELECT	2	INPUT 3	-32768.00	32768.00	0.00			V0	W0
1160	iQ	SELECT	2	INPUT 4	-32768.00	32768.00	0.00			V0	W0
1161	iR	SELECT	2	INPUT 5	-32768.00	32768.00	0.00			V0	W0
1162	iS	SELECT	2	INPUT 6	-32768.00	32768.00	0.00			V0	W0
1163	iT	SELECT	2	INPUT 7	-32768.00	32768.00	0.00			V0	W0
1164	iU	SELECT	2	SELECT	0	7	0			V0	W0
1165	iV	SELECT	2	OUTPUT 0	0.00	0.00	0.00			V0	W4
1166	iW	SELECT	2	OUTPUT 1	0.00	0.00	0.00			V0	W4
1169	iΖ	CONFIGURE DRIVE		DUMP CHANGED	0	1	0			V1	W1
1172	jС	CONFIGURE DRIVE		DEBOUNCE DIGIN	0	1	1			V0	W0
1174	jЕ	CURRENT LOOP		PHASE ANGLE @ E	0.00	0.00	0.00	DEG		V0	W4
1175	jF	COMMS PORT	3	REPLY DELAY	0	255	2	ms		V0	W0
1185	jР	FIELD CONTROL		WEAK PID ERROR	0.00	0.00	0.00	%		V1	W4
1186	jQ	FIELD CONTROL		WEAK PID OUT	0.00	0.00	0.00	%		V1	W4
1187	jR	FIELD CONTROL		FIELD STATE	0	6	0		0: FIELD INIT 1: FIELD QUENCH 2: FIELD STANDBY 3: FIELD FULL FLD 4: FIELD TIMER 5: FIELD ERROR 6: LOCAL BEMF	V0	W4
1188	jS	LINK	11	DESTINATION TAG	0	1276	686			V0	W2
1189	jТ	LINK	12	DESTINATION TAG	0	1276	688			V0	W2
1190	jU	LINK	16	DESTINATION TAG	0	1276	714			V0	W2

B-34 Parameter Specification Tables

Tag	Mn	MMI Block Name		MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Not	es
1198	kC	PLL		PLL STATE	0	6	0		0: STOPPED 1: 1ST CODING EDGE 2: READ EDGES 3: MAINS PERIOD 4: LOCKED 5: UNLOCKED 6: FAIL		W4
1199	kD	PLL		PHASE ERROR	0.00	0.00	0.00			V0	W4
1201	kF	PLL		PLL MAINS FREQ	0.00	0.00	0.00			V0	W4
1204	kI	SEQUENCING		COMMS TIMEOUT	0.0	60.0	0.0	S		V0	W0
1220	kY	CONFIGURE DRIVE		AUTOMATIC SAVE	0	1	0			V0	W0
1226	1E	AUTOTUNE		STATE	0	3	0		0: IDLE 1: RUNNING 2: SUCCESS 3: FAILED	V1	W4
1227	1F	ENCODER	1	SPEED FEEDBACK	0.0	0.0	0.0	%		V0	W4
1230	1I	ENCODER	2	ENCODER LINES	10	5000	1000			V0	W1
1231	1J	ENCODER	2	ENCODER SIGN	0	1	1		0: NEGATIVE 1: POSITIVE	V0	W1
1232	lK	ENCODER	2	ENCODER RPM	0	6000	1000	RPM		V0	W1
1235	1N	ENCODER	2	UNFIL.ENCODER	0	0	0	RPM		V0	W4
1236	10	ENCODER	2	ENCODER	0	0	0	RPM		V0	W4
1237	1P	ENCODER	2	SPEED FEEDBACK	0.0	0.0	0.0	%		V0	W4
1238	lQ	DIGITAL INPUT	4	OUTPUT	0.00	0.00	0.00	%		V0	W4
1239	1R	DIGITAL INPUT	4	VALUE FOR TRUE	-300.00	300.00	0.01	%		V0	W0
1240	1S	DIGITAL INPUT	4	VALUE FOR FALSE	-300.00	300.00	0.00	%		V0	W0
1241	1T	DIGITAL INPUT	5	OUTPUT	0.00	0.00	0.00	%		V0	W4
1242	lU	DIGITAL INPUT	5	VALUE FOR TRUE	-300.00	300.00	0.01	%		V0	W0
1243	1V	DIGITAL INPUT	5	VALUE FOR FALSE	-300.00	300.00	0.00	%		V0	W0
1246	lY	ALARM HISTORY		ALARM 1 NEWEST	0x0000	0xFFFF	0x0000			V0	W4
1247	1Z	ALARM HISTORY		ALARM 2	0x0000	0xFFFF	0x0000			V0	W4
1248	mA	ALARM HISTORY		ALARM 3	0x0000	0xFFFF	0x0000			V0	W4
1249	mB	ALARM HISTORY		ALARM 4	0x0000	0xFFFF	0x0000			V0	W4
1250	mC	ALARM HISTORY		ALARM 5	0x0000	0xFFFF	0x0000			V0	W4
1251	mD	ALARM HISTORY		ALARM 6	0x0000	0xFFFF	0x0000			V0	W4

Tag	Mn	MMI Block Name	MMI Parameter Name	Minimum	Maximum	Default	Units	Range	Not	es
1252	mЕ	ALARM HISTORY	ALARM 7	0x0000	0xFFFF	0x0000			V0	W4
1253	mF	ALARM HISTORY	ALARM 8	0x0000	0xFFFF	0x0000			V0	W4
1254	mG	ALARM HISTORY	ALARM 9	0x0000	0xFFFF	0x0000			V0	W4
1255	mН	ALARM HISTORY	ALARM 10 OLDEST	0x0000	0xFFFF	0x0000			V0	W4
1259	mL	PID	HI RES PROP GAIN	0.000	100.000	0.000			V1	W0
1265	mR	?	POSITIVE LIMIT	0.00	250.00	250.00			?	?
1266	mS	?	NEGATIVE LIMIT	-250.00	0.00	-250.00			?	?
1267	mT	ENCODER 1	ENCODER TYPE	0	1	1		0: CLOCK/DIRECTION 1: QUADRATURE	V0	W1
1268	mU	ENCODER 2	ENCODER TYPE	0	1	1		0: CLOCK/DIRECTION 1: QUADRATURE	V0	W1
1273	mZ	FIELD CONTROL	BEMF SOURCE	0	1	0		0: LOCAL BEMF 1: BEMF INPUT	V1	W1
1274	nA	FIELD CONTROL	BEMF INPUT	-200.00	200.00	0.00	%		V1	W0
1275	nB	CURRENT LOOP	ISOL DMD SOURCE	0	1	0		0: ANIN 2 (A3) 1: FIELD I DEMAND	V1	W1
1276	nC	AUTOTUNE	ERROR TYPE	0	11	0		0: NO ERROR 1: OVER SPEED 2: FIELD ERROR 3: PULSE WIDTH 4: OVER CURRENT 5: TIMEOUT 6: AUTOTUNE ABORTED 7: FIRING ANGLE 8: PEAK/AVER. RATIO 9: UNBALANCED BRID. 10: NULL AVERAGE CUR 11: THYRISTOR OFF	V1	W4

Appendix C Programming

This Appendix provides an introduction to programming the drive. It describes the function blocks and parameters available in CACT. The FUNCTION BLOCKS menu on the MMI provides access to these programming tool menu structures.

Programming Your Application	C-1
 Programming with Block Diagrams 	C-1
Function Block Descriptions	

MMI Menu Map

CONFIGURE ENABLE

CONFIGURE I/O

SYSTEM

Programming Your Application

Programming with Block Diagrams

We recommend that you use a suitable programming tool (such as "CACT" which is 'DC900P Drives' block programming software) to program the Drive for specific applications. It is however possible to use the Keypad.

NOTE

The Menus on the MMI contain parameters that don't necessarily reside in similarly-named function blocks in our Configuration Tool. To locate the function block for a parameter when using the MMI, hold the "M" key down when editing the parameter. This will display the Tag number. You can find the details for every Tag in this Appendix: Parameter Specification Tables. Alternatively, the Parameter Table in Appendix C: "Parameter Specifications" provides a quick reference from the MMI list to the associated function block.

The Drive is supplied with a basic set-up which can be used as a starting point for application-specific programming. This programming could simply involve the inputting of parameter values, or it may require the making or breaking of programmable links, which is a feature of this unit.

Block diagram programming provides a visual method of planning the software to suit your application. The basic block diagram is provided at the end of this Appendix and shows the software connections consisting of *function blocks* and *links*:

- Each function block contains the parameters required for setting-up a particular processing feature. Sometimes more than one function block is provided for a feature, i.e. for multiple digital inputs.
- Software links are used to connect the function blocks. Each link transfers the value of an output parameter to an input parameter of another (or the same) function block.

Each individual block is a processing feature: it takes the input parameter, processes the information, and makes the result available as one or more output parameters.

Modifying a Block Diagram

Operating and Configuration Modes

There are two modes of operation used while modifying a block diagram: Operating and Configuration modes.

The CONFIGURE ENABLE command is used to toggle between these two modes of operation.

Operating Mode (CONFIGURE ENABLE = DISABLED)

In Operating mode you can change parameter values. The Drive can be running or stopped. Note that some parameters can only be changed when the Drive is stopped. It is not possible to modify the internal links when the Drive is in Operating mode.

Configuration Mode (CONFIGURE ENABLE = ENABLED)

In the configuration mode you can modify connections between the function blocks in the drive. You can also change parameter values, as above. The Drive cannot run in this mode. Output values are notupdated.

Making and Breaking Function Block Connections

Links can be changed, added or deleted from a block diagram whilst in the Configuration mode. There are 80 general-purpose links available, each has its own identification number ("link" number). You make a link by setting the link's "source" and "destination" tags to be the two parameter tag numbers to be linked. The outputs of function blocks are not updated whilst in this mode.

NOTE Links 1 to 50 are pre-connected between certain blocks and form the connections shown in the Default Block Diagram. Any of these links can be re-used elsewhere in the block diagram.

The functions of the special links in previous software versions, (LINK 11 and LINK 12), are replaced by the ADVANCED 1 AND ADVANCED 2 function blocks.

In previous software versions, certain links were single-ended "special links". This is no longer the case. All links can now be re-used anywhere in the block diagram.

Programming Rules

The following rules apply when programming:

Operating Mode (CONFIGURE ENABLE = DISABLED)

- Function block output parameter values cannot be changed (because they are a result of the function block's processing)
- Function block input parameter values that receive their values from a link cannot be changed (as the link will overwrite the value when the Drive is running).

Configuration Mode (CONFIGURE ENABLE = ENABLED)

- A link's destination tag must be set to an input parameter (only one link per input parameter).
- A link's source tag may be set to any parameter. Both input and output parameters can be used as a source.
- Disable a link/function block by setting the "destination" and "source" tag to zero.
- To mark a link as a feedback link, set the source to the negative value of the tag to be connected. Feedback links are ignored when the function block execution order is determined.

Execution Rules

The complete block diagram is executed every 5ms, with individual control blocks executing within 1ms. Just before a function block is executed, all the links that have that block as their destination are executed, thereby copying new values in to the block's parameter inputs. The input parameters are then processed to produce a new set of output parameters. The execution order of the blocks is automatically arranged for minimal delay.

The output value transferred by a link on execution is clamped to be between the maximum and minimum value for its destination input parameter.

The setting of the EMULATE 900P parameter (tag 162) in the CONFIGURE DRIVE function block affects the time constants of the PID block and the linking of parameters in the function block diagram:

- ➤ When non-zero the drive emulates the functionality of links in earlier firmware versions of the 900P, (firmware Versions 5.x and 7.x)
- > When zero (0x0000) the behaviour changes so that the value is transferred, preserving the decimal place, (firmware Version 8.x and onwards).

Refer to "Compatibility with Earlier Versions of Firmware", page D-7, for more information.

To maintain compatibility, the new firmware emulates the functionality and behavior of links in earlier firmware versions by defaulting the EMULATE 900P parameter to 0x0001 (non-zero).

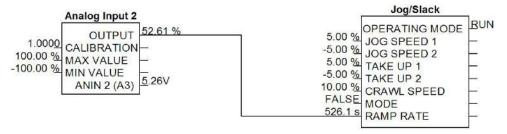


Figure 1 Operation of links (EMULATE 900P = non-zero : firmware Versions 5.x, 7.x, 8.x and onwards)

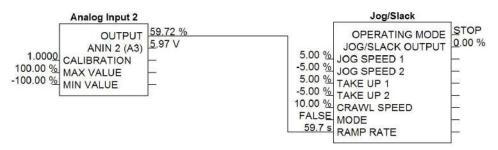


Figure 2 Operation of links (EMULATE 900P = zero : firmware Version 8.x and onwards)

The operation of a link is determined by the number of decimal places of each parameter. Previous firmware versions ignored the decimal place when linking two parameters. For example, linking Analog Input 2 to the Jog Ramp rate gave a Ramp Rate of 526.1s for an input value of 52.61%. Compare the Figure above.

An additional enhancement is that all values are now held to over 4 decimal places of precision. This is also true of values transferred via links. In the above example, although the Jog Ramp Rate is shown as 59.7s, internally the value will match that of the output of Analog Input 2, to over 4 decimal places.

Saving Your Modifications

Ensure that CONFIGURE ENABLE = DISABLED before performing a PARAMETER SAVE.

If AUTOMATIC SAVE is set TRUE then changes made via the Operator Station are automatically saved.

If parameter values or links have been modified, the new settings must be saved. The Drive will then retain the new settings during power-down. Refer to Chapter 6: "The Keypad" - Saving Your Application.

Understanding the Function Block Description

The following function blocks show the parameter information necessary for programming the Drive. Input parameters are shown on the left hand side, and output parameters are shown on the right hand side of the block.

Default Value	The default value of the unmodified factory set-up	
Input/Output Parameter Name	Output Parameter Name The name shown on CACT	
Tag Number Unique identification used for linking and communications		

Decimal Places - some parameters are held in memory with two decimal places but are displayed with one decimal place. These parameters are indicated in the Parameter Description tables. The Range parameter highlights these with a " (h) " suffix.

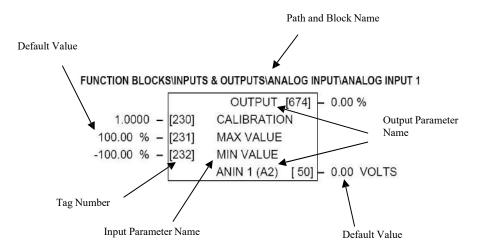
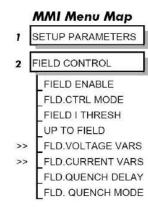


Figure D-3 Function Block Parameter Information


MMI Menu Maps

The function block descriptions include an easy-find menu showing the menu levels and titles encountered to find the appropriate menu title, and the parameters contained in the menu(s).


The Menu Maps are shown as if the view level is STANDARD.

Where there is more than one sub-menu, i.e. ANALOG INPUTS as illustrated, the parameters shown will be for the last sub-menu. In many cases, these parameters will reflect the name and number of the last sub-menu.

MMI parameters are named intuitively to make the keypad easier to use, however, they may vary slightly from function block names.

A function block may contain parameters that are contained within more than one MMI menu, for example FIELD CONTROL. In this case, the extra menus are indicated by >> in the MMI Menu Map.

Function Blocks By Category

The function blocks described in this Appendix are arranged in alphabetical order, however, they are listed below by Category. They each appear as a Menu in the FUNCTION BLOCKS menu. To view the FUNCTION BLOCKS Menu, ADVANCED view level must be selected

Alarms					
ALARM HISTORY	D-17	ALARMS	D-18		
Communications					
IN	D-12	COMMS PORT	D-32	TEC OPTION	D-133
OUT	D-13	miniLINK	D-85		
Inputs & Outputs					
ANALOG INPUTS	D-22	AUX I/O	D-28	DIGITAL OUTPUTS	D-54
ANALOG OUTPUTS	D-24	DIGITAL INPUTS	D-51		
Menus					
MENUS	D-83	OP STATION	D-87		
Miscellaneous					
ADVANCED	D-14	DRIVE INFO	D-57	MULTIPLEXER	D-86
CONFIGURE DRIVE	D-34	LINKS	D-72	VALUE FUNC	D-136
DEMULITPLEXER	D-42	LOGIC FUNC	D-77		
Motor Control					
AUTOTUNE	D-25	ENCODER	D-59	INVERSE TIME	D-73
CALIBRATION	D-29	FEEDBACKS	D-62	PLL	D-94
CURRENTLOOP	D-35	FIELD CONTROL	D-64	SPEED LOOP	D-117
CURRENT PROFILE	D-40	INERTIA COMP	D-71		
Seq & Ref					
JOG/SLACK	D-74	SEQUENCING	D-111	STOP RATES	D-130
RAMPS	D-104	STANDSTILL	D-127		
Setpoint Funcs					
DEADBAND	D-41	PRESET SPEEDS	D-96	SETPOINTSUM	D-114
MIN SPEED	D-84	RAISE/LOWER	D-101	SRAMP	D-124
PID	D-89	SELECT	D-110		
Winder					
DIAMETER CALC	D-43	PROFILED GAIN	D-99	TORQUE CALC	D-135

Function Block Descriptions

NOTE

Remember to select the correct mode, Setup or Configuration, whilst editing. Refer to "Modifying a Block Diagram", page D-1. To view the FUNCTION BLOCKS Menu, ADVANCED view level must be selected.

	MMI Menu Map
1	MENUS
	VIEW LEVEL

MMI Menu Map

SYSTEM

2 CONFIGURE I/O

INTERNAL LINKS

LINK 11

4 LINK 12

SOURCE TAG
DESTINATION TAG
ADVANCED
MODE
AUX. SOURCE

ADVANCED

These two blocks perform some simple functions. They are compatible with the special Link 11 and Link12 used in earlier versions of this product.

For new configurations, consider using the new VALUE and LOGIC function blocks.

FUNCTION BLOCKS\MISCELLANEOUS\ADVANCED\ADVANCED 1 FUNCTION BLOCKS\MISCELLANEOUS\ADVANCED\ADVANCED 2

			OUTPUT	[712]	- 0.00
0.00 %	-	[686]	INPUT 1		
0.00 %	-	[687]	INPUT 2		
OFF	_	[392]	ADVANCED		
SWITCH	_	[393]	MODE		

OUTPUT [713] - 0.00 V 0.00 % - [688] INPUT 1 0.00 % - [689] INPUT 2 OFF - [397] ADVANCED SWITCH - [398] MODE

ADVANCED

Parameter	Tag	Range
INPUT 1	686, 688	-32768.00 to 32768.00 %
General purpose input.		
INPUT 2	687, 689	-32768.00 to 32768.00 %
General purpose input.		
ADVANCED	392, 397	OFF/ON
Controls the OUTPUT parameter. V MODE.	When OFF, OUTPUT is the same as INPUT 1. When O	N, OUTPUT is the result of the function selected by
MODE	393, 398	See below

This determines which operation is performed on the INPUT 1 and INPUT 2. It can be combined with ADVANCED to dynamically switch the

C-8 Programming

OUTPUT between INPUT 1 and the result of the selected function. The functionality of the various MODE selections are shown in the table.

0: SWITCH

1:INVERTER

2: AND (logic)

3 : OR (boolean)

4 : SIGN CHANGER

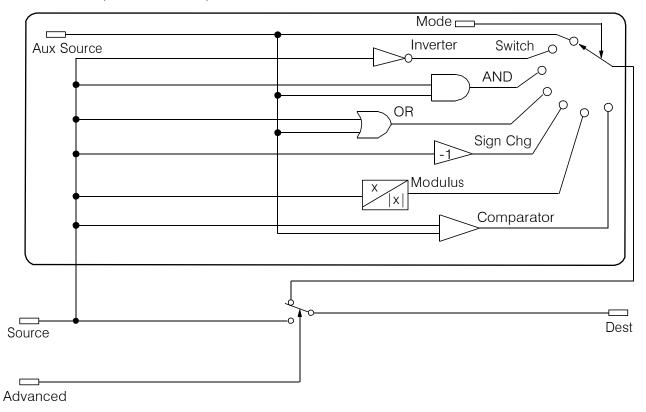
5: MODULUS

6: COMPARATOR

OUTPUT 712, 713 – .xx V

Result of the selected function on the inputs.

Functional Description


MODE	Description
SWITCH - switches the signal source between auxilliary and source analog or logic tags	If ADVANCED = OFF OUTPUT = SOURCE If ADVANCED = ON OUTPUT = INPUT 2
INVERTER - inverts the source logic signal	If ADVANCED = OFF OUTPUT = INPUT 1 If ADVANCED = ON OUTPUT = Logic Inversion of INPUT 1
AND - gives AND-ed result of source logic signal and an auxilliary source logic signal	If ADVANCED = OFF OUTPUT = INPUT 1 If ADVANCED = ON OUTPUT = INPUT 1 AND INPUT 2
OR - gives OR-ed result of source logic signal and an auxilliary source logic signal	If ADVANCED = OFF OUTPUT = INPUT 1 If ADVANCED = ON OUTPUT = INPUT 1 OR INPUT 2
SIGN CHANGER - reverses the sign of the source logic signal	If ADVANCED = OFF OUTPUT = INPUT 1 If ADVANCED = ON OUTPUT = Value sign change of INPUT 1
MODULUS - produces the modulus of the source logic signal	If ADVANCED = OFF OUTPUT = INPUT 1 If ADVANCED = ON OUTPUT = Modulus of INPUT 1
COMPARATOR - changes destination logic signal to TRUE when source analog signal is greater than auxilliary analog signal	If ADVANCED = OFF OUTPUT = INPUT 1 If ADVANCED = ON If INPUT 1 ≤ INPUT 2 OUTPUT = 0 If INPUT 1 > INPUT 2 OUTPUT = 1

C-10 Programming

Functional Description

The following diagram shows the internal schematic for a special link.

ADVANCED 1 & ADVANCED 2 (Link 11 & Link 12)

1 FUNCTION BLOCKS

2 ALARMS

3 ALARM HISTORY

ALARM 1 NEWEST

ALARM 2

ALARM 3

ALARM 4

ALARM 5

ALARM 6

ALARM 7

ALARM 8

ALARM 9

ALARM 10 OLDEST

ALARM HISTORY

ALADM HISTORY

The tenth most recent alarm.

This function block records the last ten alarms. ALARM 1 NEWEST is the most recent alarm and will be the same as the ALARMS::LAST ALARM parameter when an alarm is active.

FUNCTION BLOCKS\ALARMS\ALARM HISTORY

ALARM 1 NEWEST	[1246] - 0x0000
ALARM 2	[1247] - 0x0000
ALARM 3	[1248] - 0x0000
ALARM 4	[1249] - 0x0000
ALARM 5	[1250] - 0x0000
ALARM 6	[1251] - 0x0000
AIARM 7	[1252] - 0x0000
ALARM 8	[1253] - 0x0000
ALARM 9	[1254] - 0x0000
ALARM 10 OLDEST	[1255] - 0x0000

ALARM 10 OLDEST	1255	0x0000 to 0xFFFF
The second to ninth most recent alarms.		
ALARM 2 - ALARM 9	1247, 1248, 1249, 1250, 1251, 1252,1253, 1254	0x0000 to 0xFFFF
The hexadecimal value of the most recent	alarm. Refer to Chapter 7: "Trips and Fault Finding" - Alarm Mess	ages.
ALARM 1 NEWEST	1246	0x0000 to 0xFFFF
Parameter	Tag	Range
ALARIVI HISTORY		

C-12 Programming

MMI Menu Map

ALARM STATUS

LAST ALARM
HEALTH WORD

HEALTH STORE

THERMISTOR STATE

SPEED FBK STATE

STALL TRIP

REMOTE TRIP

MMI Menu Map

1 SETUP PARAMETERS

2 INHIBIT ALARMS

FIELD FAIL

5703 RCV ERROR

STALL TRIP

TRIP RESET

SPEED FBK ALARM

ENCODER ALARM

REM TRIP INHIBIT

MMI Menu Map

1 SETUP PARAMETERS

2 CALIBRATION

SPDFBK ALM LEVEL STALL THRESHOLD STALL TRIP DELAY REM TRIP DELAY

MMI Menu Map

DIAGNOSTICS

HEALTH LED

ALARMS

This block allows you to disable certain alarms and leave drive operation un-interrupted if the related fault occurs.

Caution

Do NOT inhibit any alarms if this might result in danger to personnel or equipment.

FUNCTION BLOCKS\ALARMS\ALARMS

THERMISTOR STATE [337] - FALSE
SPEED FBK STATE [472] - FALSE
HEALTH LED [122] - FALSE
HEALTH WORD [115] - 0x0000
HEALTH STORE [116] - 0x0000
REMOTE TRIP [542] - FALSE
STALL TRIP [112] - FALSE

LAST ALARM [528] - 0x0000 **ENABLED** [19] FIELD FAIL **ENABLED** [111] 5703 RCV ERROR **ENABLED** [28] STALL TRIP TRUE [305] TRIP RESET **ENABLED** [81] SPEED FBK ALARM **ENABLED** [92] ENCODER ALARM **ENABLED** [540] REM TRIP INHIBIT 10.0 s [541] REM TRIP DELAY 95.00 % [263] STALL THRESHOLD 30.0 s [224] STALL TRIP DELAY

[180] SPDFBK ALM LEVEL

50.0 %

ALARMS

Parameter	Tag	Range
FIELD FAIL	19	ENABLED / INHIBITED
Inhibits the field fail alarm.		
RCV ERROR	111	ENABLED / INHIBITED

STALL TRIP 28 ENABLED / INHIBITED

Inhibits the stall trip alarm from tripping out the contactor. This is useful in applications requiring extended operation at zero speed.

TRIP RESET 305 FALSE / TRUE

When FALSE: faults are latched permanently and the HEALTHY output remains inactive, even when toggling the Start/Run input (C3) off/on. Once the drive is stopped the sequencing state remains in the SEQ HOLD state if any fault has been stored.

Changing from FALSE to TRUE clears any stored faults. Also, when TRUE: stored faults are cleared whenever a Run signal is given to terminal C3. This feature can be used in applications where you want to reset the faults under your own control, rather than automatically with the Start/Run command.

SPEED FBK ALARM 81 ENABLED / INHIBITED
Inhibits the speed feedback alarm.

ALADRAS		
ALARMS		
Parameter	Tag	Range
ENCODER ALARM	92	ENABLED / INHIBITED
Inhibits the encoder option board a	larm.	
REM TRIP INHIBIT	540	ENABLED / INHIBITED
Inhibits the remote trip.		
REM TRIP DELAY	541	0.1 to 600.0 s
The delay between the remote trip	alarm being activated and the drive tripping.	
STALL THRESHOLD	263	0.00 to 200.00 %
Stall comparator current feedback	threshold level.	
STALL TRIP DELAY	224	0.1 to 600.0 s
Stall comparator time-out delay be	fore stall output becomes true.	
	AT ZERO SETPOINT	
		ALL TRIP DELAY
SPDFBK ALM LEVEL	180	0.0 to 100.0 % (h)
The speed feedback alarm compare ignals should exceed for the alarm	es speed feedback to armature voltage. The alarm level is the not oactivate.	he threshold which the difference between the two
THERMISTOR STATE	337	FALSE / TRUE
TRUE if the thermistor input is act	ive, FALSE otherwise.	
SPEED FBK STATE	472	FALSE / TRUE
*	ate of the speed feedback alarm. This output is updated ever	en when the alarm is disabled.
HEALTH LED	122	FALSE / TRUE
State of Health LED on Keypad.		
	115	0x0000 to 0xFFFF
-	ns present. Refer to Chapter 7: "Trips and Fault Finding" - A	Alarm Messages.
The hexadecimal sum of any alarm	ns present. Refer to Chapter 7: "Trips and Fault Finding" - A	Alarm Messages. 0x0000 to 0xFFFF
The hexadecimal sum of any alarm HEALTH STORE The hexadecimal value of the first	ns present. Refer to Chapter 7: "Trips and Fault Finding" - A 116 (or only) alarm. Refer to Chapter 7: "Trips and Fault Finding"	Alarm Messages. 0x0000 to 0xFFFF ng" - Alarm Messages.
The hexadecimal sum of any alarm	ns present. Refer to Chapter 7: "Trips and Fault Finding" - A	Alarm Messages. 0x0000 to 0xFFFF

C-14 Programming

Parameler	ALARMS		
Armature current is above STALL THRESHOLD and AT ZERO SPEED but not AT ZERO SETPOINT. LAST ALARM	Parameter	Tag	Range
The hexadecimal value of the last (or only) alarm. Refer to Chapter 7: "Trips and Fault Finding" - Alarm Messages. No000: NO ACTIVE ALARMS 0x0001: OVER SPEED 0x0002: MISSING PULSE 0x0004: FIELD OVER I 0x0008: HEATSINK TRIP 0x0010: THERMISTOR 0x0020: OVER VOLTS (VA) 0x0040: SPD FEEDBACK 0x0080: ENCODER FAILED 0x0100: FIELD FAILED 0x0100: FIELD FAILED 0x0400: PHASE LOCK 0x0800: RCV ERROR 0x1000: STALL TRIP 0x2000: OVER I TRIP 0x2000: OVER I TRIP 0x2000: OVER I TRIP 0x5000: ACCTS FAILED 0x600: ACCTS FAIL	STALL TRIP	112	FALSE / TRUE
The hexadecimal value of the last (or only) alarm. Refer to Chapter 7: "Trips and Fault Finding" - Alarm Messages. 0x0000 : NO ACTIVE ALARMS 0x0001 : OVER SPEED 0x0002 : MISSING PULSE 0x0004 : FIELD OVER I 0x0008 : HEATSINK TRIP 0x0010 : THERMISTOR 0x0020 : OVER VOLTS (VA) 0x0040 : SPD FEEDBACK 0x0080 : ENCODER FAILED 0x0100 : FIELD FAILED 0x0100 : FIELD FAILED 0x0400 : PHASE LOCK 0x0800 : RCV ERROR 0x1000 : STALL TRIP 0x2000 : OVER I TRIP 0x2000 : OVER I TRIP 0x5000 : ACCTS FAILED 0x600 : CONTACTOR DELAY 0x600 : EXTERNAL TRIP 0x600 : EXTERNAL TRIP 0x600 : EXTERNAL TRIP 0x600 : CONTACTOR DELAY 0x600 : EXTERNAL TRIP 0x600 : CONTACTOR DELAY 0x600 : EXTERNAL TRIP 0x600 : CONTACTOR DELAY 0x600 : CONTACT	Armature current is above STALL THRES	HOLD and AT ZERO SPEED but not A	T ZERO SETPOINT.
0x0000 : NO ACTIVE ALARMS 0x0001 : OVER SPEED 0x0002 : MISSING PULSE 0x0004 : FIELD OVER I 0x0008 : HEATSINK TIP 0x0010 : THERMISTOR 0x0020 : OVER VOLTS (VA) 0x0040 : SPD FEEDBACK 0x0080 : ENCODER FAILED 0x0100 : FIELD FAILED 0x0200 : 3 PHASE FAILED 0x0400 : PHASE ALCE 0x0400 : PHASE ALCE 0x0400 : RCV ERROR 0x1000 : STALL TRIP 0x2000 : OVER I TRIP 0x2000 : OVER I TRIP 0x8000 : ACCTS FAILED 0x6001 : AUTOTUNE ERROR 0xF001 : AUTOTUNE ERROR 0xF002 : AUTOTUNE ABORTED 0xF003 : SEQ PRE READY 0xF004 : CONTACTOR DELAY 0xF005 : EXTERNAL TRIP 0xF006 : REMOTE TRIP 0xF007 : ENABLE LOW 0xF009 : SEQUENCING 0xF001 : COMMS TIMEOUT 0xF200 : CONFIG ENABLED 0xF300 : CALIBRATION 0xF400 : NO OP-STATION	LAST ALARM	528	0x0000 to 0xFFFF
0x0001 : OVER SPEED 0x0002 : MISSING PULSE 0x0004 : FIELD OVER I 0x0008 : HEATSINK TRIP 0x0010 : THERMISTOR 0x0020 : OVER VOLTS (VA) 0x0040 : SPD FEEDBACK 0x0080 : ENCODER FAILED 0x0100 : FIELD FAILED 0x0100 : FIELD FAILED 0x0200 : 3 PHASE FAILED 0x0400 : PHASE LOCK 0x0800 : RCV ERROR 0x1000 : STALL TRIP 0x2000 : OVER I TRIP 0x2000 : OVER I TRIP 0x5001 : AUTOTUNE ERROR 0xF001 : AUTOTUNE ABORTED 0xF001 : AUTOTUNE ABORTED 0xF003 : SEQ PRE READY 0xF004 : CONTACTOR DELAY 0xF004 : CONTACTOR DELAY 0xF006 : REMOTE TRIP 0xF007 : ENABLE LOW 0xF009 : SEQUENCING 0xF010 : COMMS TIMEOUT 0xF200 : COMFIG ENABLED 0xF300 : CALIBRATION 0xF400 : NO OP-STATION	The hexadecimal value of the last (or only)	alarm. Refer to Chapter 7: "Trips and Fa	ult Finding" - Alarm Messages.
0x0002 : MISSING PULSE 0x0004 : FIELD OVER I 0x0008 : HEATSINK TRIP 0x0010 : THERMISTOR 0x0020 : OVER VOLTS (VA) 0x0040 : SPD FEEDBACK 0x0080 : ENCODER FAILED 0x0100 : FIELD FAILED 0x0100 : FIELD FAILED 0x0200 : 3 PHASE FAILED 0x0400 : PHASE LOCK 0x0800 : RCV ERROR 0x1000 : STALL TRIP 0x2000 : OVER 1 TRIP 0x2000 : OVER 1 TRIP 0x8000 : ACCTS FAILED 0xF001 : AUTOTUNE ERROR 0xF002 : AUTOTUNE ABORTED 0xF003 : SEQ PRE READY 0xF004 : CONTACTOR DELAY 0xF005 : EXTERNAL TRIP 0xF006 : REMOTE TRIP 0xF007 : ENABLE LOW 0xF009 : SEQUENCING 0xF010 : COMMS TIMEOUT 0xF200 : CONFIG ENABLED 0xF300 : CALIBRATION 0xF400 : NO OP-STATION	0x0000 : NO ACTIVE ALARMS		
0x0004 : FIELD OVER I 0x0008 : HEATSINK TRIP 0x0010 : THERMISTOR 0x0020 : OVER VOLTS (VA) 0x0040 : SPD FEEDBACK 0x0080 : ENCODER FAILED 0x0100 : FIELD FAILED 0x0200 : 3 PHASE FAILED 0x0200 : 3 PHASE FAILED 0x0400 : PHASE LOCK 0x0800 : RCV ERROR 0x1000 : STALL TRIP 0x2000 : OVER I TRIP 0x2000 : OVER I TRIP 0x8000 : ACCTS FAILED 0xF001 : AUTOTUNE ERROR 0xF001 : AUTOTUNE ABORTED 0xF003 : SEQ PRE READY 0xF004 : CONTACTOR DELAY 0xF005 : EXTERNAL TRIP 0xF006 : REMOTE TRIP 0xF007 : ENABLE LOW 0xF007 : ENABLE LOW 0xF007 : COMMS TIMEOUT 0xF001 : COMMS TIMEOUT 0xF000 : COMFIG ENABLED 0xF300 : CALIBRATION 0xF400 : NO OP-STATION	0x0001 : OVER SPEED		
0x0008 : HEATSINK TRIP 0x0010 : THERMISTOR 0x0020 : OVER VOLTS (VA) 0x0040 : SPD FEEDBACK 0x0080 : ENCODER FAILED 0x0100 : FIELD FAILED 0x0200 : 3 PHASE FAILED 0x0400 : PHASE LOCK 0x0800 : RCV ERROR 0x1000 : STALL TRIP 0x2000 : OVER I TRIP 0x2000 : OVER I TRIP 0x2000 : ACCTS FAILED 0xF001 : AUTOTUNE ERROR 0xF002 : AUTOTUNE BRORE 0xF003 : SEQ PRE READY 0xF004 : CONTACTOR DELAY 0xF005 : EXTERNAL TRIP 0xF006 : REMOTE TRIP 0xF007 : ENABLE LOW 0xF009 : SEQUENCING 0xF010 : COMMS TIMEOUT 0xF000 : CONFIG ENABLED 0xF010 : CALIBRATION 0xF400 : NO OP-STATION	0x0002 : MISSING PULSE		
0x0010: THERMISTOR 0x0020: OVER VOLTS (VA) 0x0040: SPD FEEDBACK 0x0080: ENCODER FAILED 0x0100: FIELD FAILED 0x0100: FIELD FAILED 0x0200: 3 PHASE FAILED 0x0400: PHASE LOCK 0x0800: RCV ERROR 0x1000: STALL TRIP 0x2000: OVER 1 TRIP 0x2000: OVER 1 TRIP 0x8000: ACCTS FAILED 0xF001: AUTOTUNE ERROR 0xF002: AUTOTUNE ABORTED 0xF003: SEQ PRE READY 0xF004: CONTACTOR DELAY 0xF005: EXTERNAL TRIP 0xF006: REMOTE TRIP 0xF007: ENABLE LOW 0xF007: ENABLE LOW 0xF001: COMMS TIMEOUT 0xF001: COMMS TIMEOUT 0xF200: CONFIG ENABLED 0xF300: CALIBRATION 0xF400: NO OP-STATION	0x0004 : FIELD OVER I		
0x0020: OVER VOLTS (VA) 0x0040: SPD FEEDBACK 0x0080: ENCODER FAILED 0x0100: FIELD FAILED 0x0200: 3 PHASE FAILED 0x0400: PHASE LOCK 0x0800: RCV ERROR 0x1000: STALL TRIP 0x2000: OVER I TRIP 0x2000: OVER I TRIP 0x8000: ACCTS FAILED 0xF001: AUTOTUNE ERROR 0xF002: AUTOTUNE ABORTED 0xF003: SEQ PRE READY 0xF004: CONTACTOR DELAY 0xF005: EXTERNAL TRIP 0xF006: REMOTE TRIP 0xF007: ENABLE LOW 0xF007: ENABLE LOW 0xF007: COMMS TIMEOUT 0xF200: COMMS TIMEOUT 0xF200: COMMS TIMEOUT 0xF200: CALIBRATION 0xF400: NO OP-STATION	0x0008 : HEATSINK TRIP		
0x0040: SPD FEEDBACK 0x0080: ENCODER FAILED 0x0100: FIELD FAILED 0x0200: 3 PHASE FAILED 0x0400: PHASE LOCK 0x0800: RCV ERROR 0x1000: STALL TRIP 0x2000: OVER I TRIP 0x2000: OVER I TRIP 0x8000: ACCTS FAILED 0xF001: AUTOTUNE ERROR 0xF002: AUTOTUNE ABORTED 0xF003: SEQ PRE READY 0xF003: SEQ PRE READY 0xF005: EXTERNAL TRIP 0xF006: REMOTE TRIP 0xF006: REMOTE TRIP 0xF007: ENABLE LOW 0xF007: ENABLE LOW 0xF009: SEQUENCING 0xF010: COMMS TIMEOUT 0xF200: CONFIG ENABLED 0xF300: CALIBRATION 0xF400: NO OP-STATION			
0x0080 : ENCODER FAILED 0x0100 : FIELD FAILED 0x0200 : 3 PHASE FAILED 0x0400 : PHASE LOCK 0x0800 : RCV ERROR 0x1000 : STALL TRIP 0x2000 : OVER I TRIP 0x8000 : ACCTS FAILED 0xF001 : AUTOTUNE ERROR 0xF002 : AUTOTUNE ABORTED 0xF003 : SEQ PRE READY 0xF003 : SEQ PRE READY 0xF005 : EXTERNAL TRIP 0xF006 : REMOTE TRIP 0xF007 : ENABLE LOW 0xF007 : ENABLE LOW 0xF009 : SEQUENCING 0xF010 : COMMS TIMEOUT 0xF200 : CONFIG ENABLED 0xF300 : CALIBRATION 0xF400 : NO OP-STATION	0x0020: OVER VOLTS (VA)		
0x0100: FIELD FAILED 0x0200: 3 PHASE FAILED 0x0400: PHASE LOCK 0x0800: RCV ERROR 0x1000: STALL TRIP 0x2000: OVER I TRIP 0x8000: ACCTS FAILED 0xF001: AUTOTUNE ERROR 0xF002: AUTOTUNE ABORTED 0xF003: SEQ PRE READY 0xF004: CONTACTOR DELAY 0xF005: EXTERNAL TRIP 0xF006: REMOTE TRIP 0xF007: ENABLE LOW 0xF009: SEQUENCING 0xF010: COMMS TIMEOUT 0xF200: CONFIG ENABLED 0xF300: CALIBRATION 0xF400: NO OP-STATION			
0x0200 : 3 PHASE FAILED 0x0400 : PHASE LOCK 0x0800 : RCV ERROR 0x1000 : STALL TRIP 0x2000 : OVER I TRIP 0x8000 : ACCTS FAILED 0xF001 : AUTOTUNE ERROR 0xF002 : AUTOTUNE ABORTED 0xF003 : SEQ PRE READY 0xF004 : CONTACTOR DELAY 0xF005 : EXTERNAL TRIP 0xF006 : REMOTE TRIP 0xF007 : ENABLE LOW 0xF009 : SEQUENCING 0xF010 : COMMS TIMEOUT 0xF200 : COMFIG ENABLED 0xF300 : CALIBRATION 0xF400 : NO OP-STATION			
0x0400: PHASE LOCK 0x0800: RCV ERROR 0x1000: STALL TRIP 0x2000: OVER I TRIP 0x8000: ACCTS FAILED 0xF001: AUTOTUNE ERROR 0xF002: AUTOTUNE ABORTED 0xF003: SEQ PRE READY 0xF004: CONTACTOR DELAY 0xF005: EXTERNAL TRIP 0xF006: REMOTE TRIP 0xF007: ENABLE LOW 0xF009: SEQUENCING 0xF010: COMMS TIMEOUT 0xF200: CONFIG ENABLED 0xF300: CALIBRATION 0xF400: NO OP-STATION			
0x0800: RCV ERROR 0x1000: STALL TRIP 0x2000: OVER I TRIP 0x8000: ACCTS FAILED 0xF001: AUTOTUNE ERROR 0xF002: AUTOTUNE ABORTED 0xF003: SEQ PRE READY 0xF004: CONTACTOR DELAY 0xF005: EXTERNAL TRIP 0xF006: REMOTE TRIP 0xF006: REMOTE TRIP 0xF007: ENABLE LOW 0xF009: SEQUENCING 0xF010: COMMS TIMEOUT 0xF200: CONFIG ENABLED 0xF300: CALIBRATION 0xF400: NO OP-STATION			
0x1000: STALL TRIP 0x2000: OVER I TRIP 0x8000: ACCTS FAILED 0xF001: AUTOTUNE ERROR 0xF002: AUTOTUNE ABORTED 0xF003: SEQ PRE READY 0xF004: CONTACTOR DELAY 0xF005: EXTERNAL TRIP 0xF006: REMOTE TRIP 0xF007: ENABLE LOW 0xF009: SEQUENCING 0xF010: COMMS TIMEOUT 0xF200: CALIBRATION 0xF400: NO OP-STATION			
0x2000 : OVER I TRIP 0x8000 : ACCTS FAILED 0xF001 : AUTOTUNE ERROR 0xF002 : AUTOTUNE ABORTED 0xF003 : SEQ PRE READY 0xF004 : CONTACTOR DELAY 0xF005 : EXTERNAL TRIP 0xF006 : REMOTE TRIP 0xF007 : ENABLE LOW 0xF009 : SEQUENCING 0xF010 : COMMS TIMEOUT 0xF200 : CONFIG ENABLED 0xF300 : CALIBRATION 0xF400 : NO OP-STATION			
0x8000 : ACCTS FAILED 0xF001 : AUTOTUNE ERROR 0xF002 : AUTOTUNE ABORTED 0xF003 : SEQ PRE READY 0xF004 : CONTACTOR DELAY 0xF005 : EXTERNAL TRIP 0xF006 : REMOTE TRIP 0xF007 : ENABLE LOW 0xF009 : SEQUENCING 0xF010 : COMMS TIMEOUT 0xF200 : CONFIG ENABLED 0xF300 : CALIBRATION 0xF400 : NO OP-STATION			
0xF001: AUTOTUNE ERROR 0xF002: AUTOTUNE ABORTED 0xF003: SEQ PRE READY 0xF004: CONTACTOR DELAY 0xF005: EXTERNAL TRIP 0xF006: REMOTE TRIP 0xF007: ENABLE LOW 0xF009: SEQUENCING 0xF010: COMMS TIMEOUT 0xF200: CONFIG ENABLED 0xF300: CALIBRATION 0xF400: NO OP-STATION			
0xF002 : AUTOTUNE ABORTED 0xF003 : SEQ PRE READY 0xF004 : CONTACTOR DELAY 0xF005 : EXTERNAL TRIP 0xF006 : REMOTE TRIP 0xF007 : ENABLE LOW 0xF009 : SEQUENCING 0xF010 : COMMS TIMEOUT 0xF200 : CONFIG ENABLED 0xF300 : CALIBRATION 0xF400 : NO OP-STATION			
0xF003 : SEQ PRE READY 0xF004 : CONTACTOR DELAY 0xF005 : EXTERNAL TRIP 0xF006 : REMOTE TRIP 0xF007 : ENABLE LOW 0xF009 : SEQUENCING 0xF010 : COMMS TIMEOUT 0xF200 : CONFIG ENABLED 0xF300 : CALIBRATION 0xF400 : NO OP-STATION		_	
0xF004 : CONTACTOR DELAY 0xF005 : EXTERNAL TRIP 0xF006 : REMOTE TRIP 0xF007 : ENABLE LOW 0xF009 : SEQUENCING 0xF010 : COMMS TIMEOUT 0xF200 : CONFIG ENABLED 0xF300 : CALIBRATION 0xF400 : NO OP-STATION)	
0xF005 : EXTERNAL TRIP 0xF006 : REMOTE TRIP 0xF007 : ENABLE LOW 0xF009 : SEQUENCING 0xF010 : COMMS TIMEOUT 0xF200 : CONFIG ENABLED 0xF300 : CALIBRATION 0xF400 : NO OP-STATION			
0xF006: REMOTE TRIP 0xF007: ENABLE LOW 0xF009: SEQUENCING 0xF010: COMMS TIMEOUT 0xF200: CONFIG ENABLED 0xF300: CALIBRATION 0xF400: NO OP-STATION			
0xF007 : ENABLE LOW 0xF009 : SEQUENCING 0xF010 : COMMS TIMEOUT 0xF200 : CONFIG ENABLED 0xF300 : CALIBRATION 0xF400 : NO OP-STATION			
0xF009 : SEQUENCING 0xF010 : COMMS TIMEOUT 0xF200 : CONFIG ENABLED 0xF300 : CALIBRATION 0xF400 : NO OP-STATION			
0xF010 : COMMS TIMEOUT 0xF200 : CONFIG ENABLED 0xF300 : CALIBRATION 0xF400 : NO OP-STATION			
0xF200 : CONFIG ENABLED 0xF300 : CALIBRATION 0xF400 : NO OP-STATION			
0xF300 : CALIBRATION 0xF400 : NO OP-STATION			
0xF400 : NO OP-STATION			
VALUE ALON BUILDI			
0xFF05: PCB VERSION			
0xFF06: PRODUCT CODE			

Functional Description

INHIBIT ALARMS TO ALARM STATUS DEFAULT TAG# SETTING PARAMETER FIELD FAIL FIELD FAIL **ENABLED** FIELD CURRENT LESS THAN 6% [1] RCV ERROR 111 RCV ERROR **ENABLED** SLAVE MODE AND COMMS ERROR STALL TRIP STALL TRIP INHIBIT **ENABLED** FROM CAUBRATION STALL DELAY AND STALL THRESHOLD SPEED FBK ALARM **ENABLED** 81 SPEED FBK ALARM FROM CALIBRATION SPDFBK ALM LEVEL ENCODER ALARM **ENCODER ALARM ENABLED** ENCODER FEEDBACK SELECTED AND ERROR DETECTED HEALTH RESET 305 TRIP RESET TRUE DRIVE START NOTE [1]: FIELD FAIL THRESHOLD IS 6% IN CURRENT CONTROL 12% IN VOLTAGE CONTROL

C-16 Programming

MMI Menu Map

SYSTEM

- CONFIGURE I/O
- 3 ANALOG INPUTS
- ANIN 1 (A2)
- 4 ANIN 2 (A3)
- 4 ANIN 3 (A4)
- ANIN 4 (A5)
- 4 ANIN 5 (A6)

CALIBRATION

MAX VALUE

MIN VALUE

DESTINATION

ANALOG INPUTS

The analog input block is used to scale and clamp the inputs for terminals A2 to A6.

FUNCTION BLOCKS\INPUTS & OUTPUTS\ANALOG INPUT\ANALOG INPUT 1

		OUTPUT [674] - 0.00 %
1.0000 -	[230]	CALIBRATION
100.00 % -	[231]	MAX VALUE
-100.00 % -		MIN VALUE
		ANIN 1 (A2) [50] - 0.00 VOLTS

FUNCTION BLOCKS\INPUTS & OUTPUTS\ANALOG INPUT\ANALOG INPUT 3

			OUTPUT [675] - 0.00 %
1.0000	-	[236]	CALIBRATION
100.00 %	-	[237]	MAX VALUE
-100.00 %	_	[238]	MIN VALUE
			ANIN 3 (A4) [52] - 0.00 VOLTS

FUNCTION BLOCKS\INPUTS & OUTPUTS\ANALOG INPUT\ANALOG INPUT 5

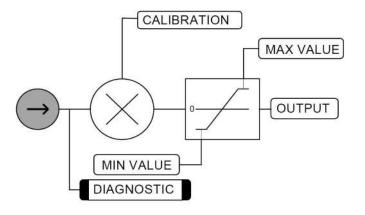
		OUTPUT	[677]	0.00	%
1.0000 - [2	242] CA	ALIBRATION			
200.00 % - [2					
-200.00 % - [2	244] MI	N VALUE			
		ANIN 5 (A6)	[54]	0.00	VOLTS

FUNCTION BLOCKS\INPUTS & OUTPUTS\ANALOG INPUT\ANALOG INPUT 2

			OUTPUT [493] - 0.00 %	
1.0000	-	[233]	CALIBRATION	
100.00 %	-	[234]	MAX VALUE	
-100.00 %	_	[235]	MIN VALUE	
			ANIN 2 (A3) [51] - 0.00 VOLTS	

FUNCTION BLOCKS\INPUTS & OUTPUTS\ANALOG INPUT\ANALOG INPUT 4

		OUTPUT [676] - 0.00 %
1.0000 -	[239]	CALIBRATION
200.00 % -	[240]	MAX VALUE
-200.00 % -	[241]	MIN VALUE
		ANIN 4 (A5) [53] - 0.00 VOLTS

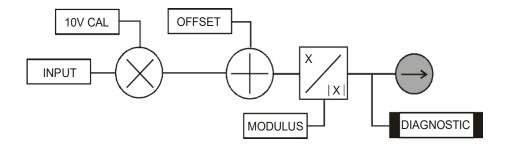

NOTE

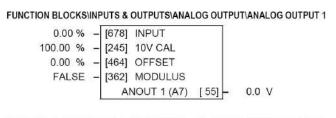
Terminal ANIN 2 (A3) is permanently connected to SETPOINT 2 (A3) in the SPEED LOOP function block and to the Current Demand via I DEMAND ISOLATE (the current demand isolate switch) in the CURRENT LOOP function block.

To avoid interference with other drive functions when not required: the parameter RATIO 2 (A3) (Tag 7 in the SPEED LOOP function block) must be set to zero; and the I DMD. ISOLATE parameter (Tag 119 in the CURRENT LOOP function block) must be set to DISABLED, i.e. selecting the Speed Loop as shown in the Main Block Diagram.

Because ANIN 2 (A3) is scanned synchronously with the current loop (typically every 3.3/2.6ms, 50/60Hz), it should be used for any signal whose response is critical e.g. a trim input from an external positioning system or load share.

Configurable Analog Inputs


ANALOG INPUTS		
Parameter	Tag	Range
CALIBRATION	230, 233, 236, 239, 242	-3.0000 to 3.0000
The analog input scaling ratio. For a value of 1	100, 10V = 100%.	
MAX VALUE	231, 234, 237, 240, 243	-300.00 to 300.00 %
The maximum value of the scaled analog input.		
MIN VALUE	232, 235, 238, 241, 244	-300.00 to 300.00 %
The minimum value of the scaled analog input.		
OUTPUT	674, 493, 675, 676, 677	xx %
These parameters is the output diagnostic ANA adjust the CALIBRATION, MAX VALUE and	LOG INPUT 1 to ANALOG INPUT 5. Note by def IMIN VALUE parameters.	Fault $10V = 100\%$. To obtain a different range,
ANIN 1 (A2) to ANIN 5 (A6)	50, 51, 52, 53, 54	xx VOLTS
Actual volts measured on the analog input.		


C-18 Programming

ANALOG OUTPUTS

This function block converts the demand percentage into 1-10V, suitable for driving the analog output electronics of the drive.

FUNCTION BLOCKSINPUTS & OUTPUTS\ANALOG OUTPUT\ANALOG OUTPUT 2 0.00 % - [679] INPUT 100.00 % - [248] 10V CAL 0.00 % - [465] OFFSET FALSE - [363] MODULUS ANOUT 2 (A8) [56] - 0.0 V

ANALOG OUTPUTS		
Parameter	Tag	Range
INPUT	678, 679	-300.00 to 300.00 %
Analog output value as a percentage of range.		
10V CAL	245, 248	-300.00 to 300.00 %
(% TO GET 10V)		
Scaler value which produces 10V output. Set 1	0V CAL to be 50% to get ± 10 V out for ± 5	50% in.
OFFSET	464, 465	-100.00 to 100.00 %
Offset value added to the normal output value	after the scaler and before the modulus.	
MODULUS	362, 363	FALSE / TRUE
Unipolar analog output enable. If TRUE, then	-10% gives +1V out.	
ANOUT 1 (A7) to ANOUT 2 (A8)	55, 56	xx V (h)
Actual voltage output to the terminal.		

1 SETUP PARAMETERS

2 CURRENT LOOP AUTOTUNE

MMI Menu Map

FUNCTION BLOCKS

2 MOTOR CONTROL

3 AUTOTUNE

_STATE _METHOD ERROR TYPE

AUTOTUNE

The Autotune feature is used to correctly set up the current loop controller parameters for the motor load.

The process consists of the drive generating a series of current pulses in the armature in order to determine:

STATE [1226] - IDLE
ERROR TYPE [1276] - NO ERROR
OFF - [18] AUTOTUNE
4Q MULTI - [609] METHOD

FUNCTION BLOCKS\MOTOR CONTROL\AUTOTUNE

- 1. The optimal proportional term and integral terms gains in the current controller, and storing these values as PROP. GAIN and INT. GAIN.
- 2. The average value at which the normal running pulses would just join up (stop being discontinuous), and storing this value as the DISCONTINUOUS parameter.

The Autotune is by default performed with the motor field off, and so the final proportional term gain is reduced by 30% to allow for some armature inductance fall-off when the field is re-applied.

Refer to Chapter 4: Performance Adjustment for details of how to perform an Autotune.

AUTOTUNE

Parameter	Tag	Range
AUTOTUNE	18	OFF / ARMATURE / FIELD

Turns the AUTOTUNE procedure on, and selects if field or armature tuning is required. Refer to Chapter 4: Performance Adjustment.

STATE 1226 See below

Indicates the current operating state of the Autotune function block. The FAILED state indicates failure or abort of the Autotune process (for causes refer to Chapter 4: Performance Adjustment).

0: IDLE

1 : RUNNING

2 : SUCCESS

3 : FAILED

METHOD 609 See below

Controls the method of operation of the Autotune process.

- The default method 4QMULTI uses both thyristor bridges to generate balanced forward and reverse armature current pulses.
- The 2QMULTI method only uses the forward thyristor bridge.

Note that the 2Q MULTI method is always used on a 2Q drive (591) irrespective of the setting of this parameter.

0 : 4Q MULTI 1 : 2Q MULTI

C-20 Programming

AUTOTUNE

Parameter Tag Range	ERROR TYPE	4070	
	Parameter	Tag	Range

Indicates the cause of an autotune error condition.

0: NO ERROR

1: OVER SPEED

2: FIELD ERROR

3: PULSE WIDTH

4: OVER CURRENT

5: TIMEOUT

6: AUTOTUNE ABORTED

7: FIRING ANGLE

8: PEAK/AVER. RATIO

9: UNBALANCED BRID.

10: NULL AVERAGE CUR

11: THYRISTOR OFF (missing pulse)

Functional Description

OVER SPEED Motor speed detected at greater than 20% during autotune.

FIELD ERROR Armature Autotune:

For a field-off armature autotune, it means that the field current was measured at greater than 6% of the calibration value (which, if the field is calibrated to a low current, can be a very low threshold).

For a field-on armature autotune, it means that the field was not up to current when expected during the autotune process.

Field Autotune: Field volts found to be less than 10% for 50% of rated field current flowing, or Field current measured at > 105% of rated during autotune.

PULSE WIDTH Less than 12 pulses have been measured during the autotune that meeting the pulse width angle tolerance requirements – likely unstable/unbalanced supply or motor shaft moving.

OVER CURRENT Equivalent discontinuous armature current level measured at greater than 200% of either the stack rating or ARMATURE

CURRENT setting;

TIMEOUT Various timeouts.

AUTOTUNE ABORTED User abort of the process.

FIRING ANGLE Firing angle has reached 60deg. before zero voltage crossing, in an attempt to derive a 60deg. wide pulse – likely

absent armature or severely resistive load.

PEAK/AVER.RATIO Badly shaped current pulse, where the pk/average current ratio is more than 30% away from expected 1.5.

UNBALANCED BRID. Pulse size imbalance greater than that from a motor BEMF equivalent to 5deg. from zero voltage crossing – likely

poorly balanced supply phases or motor shaft turning.

NULL AVERAGE CUR No current pulses detected.

THYRISTOR OFF Missing pulse detected – likely missing firing pulses from one or more thyristors.

C-22 Programming

AUX I/O

MMI Menu Map
SETUP PARAMETERS

AUX DIGOUT 1
AUX DIGOUT 2
AUX DIGOUT 3
ANOUT 1

ANOUT 2

The auxiliary I/O parameters are primarily intended to extend the functionality of the serial links by allowing them access to the drive analog and digital terminals.

AUX I/O

Parameter	Tag	Range
AUX DIGOUT 1	94	FALSE / TRUE

Software digital output 1. For example, to directly drive the configurable digital output DIGOUT1, connect the Source of DIGOUT1 to this parameter, Tag 94.

AUX DIGOUT 2 95 FALSE / TRUE

Software digital output 2. For example, to directly drive the configurable digital output DIGOUT2, connect the Source of DIGOUT2 to this parameter, Tag 95.

AUX DIGOUT 3 96 FALSE / TRUE

Software digital output 3. For example, to directly drive the configurable digital output DIGOUT3, connect the Source of DIGOUT3 to this parameter, Tag 96.

ANOUT 1 128 -100.00 to 100.00 %

Software analog output 1. For example, to directly drive the configurable analog output ANOUT1, connect the Source of ANOUT1 to this parameter, Tag 128. ANOUT 1 can also be used as a general "staging post" for connecting inputs to outputs. For example, connect Analog Input 1 (A2) directly to Analog Output 1 (A7)

ANOUT 2 129 -100.00 to 100.00 %

Software analog output 2. For example, to directly drive the configurable analog output ANOUT2, connect the Source of ANOUT2 to this parameter, Tag 129. ANOUT 2 can also be used as a general "staging post" for connecting inputs to outputs. For example, connect Analog Input 1 (A2) directly to Analog Output 2 (A8)

CALIBRATION

MMI Menu Map

SETUP PARAMETERS

2 CALIBRATION

ARMATURE V CAL.
IR COMPENSATION
ANALOG TACH CAL
ZERO SPD. OFFSET
ARMATURE I (A9)
FIELD I CAL.

MMI Menu Map

DIAGNOSTICS

TERMINAL VOLTS
BACK EMF
UNFIL. TACH INPUT

This function block contains motor-specific parameters.

When CONFIGURE ENABLE = TRUE, the operation of the Block Diagram is suspended and all Keypad LEDs will flash.

FUNCTION BLOCKS\MOTOR CONTROL\CALIBRATION TERMINAL VOLTS [57] - 0.0% UNFIL. TACH INPUT [58] - 0.0% BACK EMF [60] - 0.0% 1.0000 [20] ARMATURE V CAL. 0.00 % [21] IR COMPENSATION 1.0000 [23] ANALOG TACH CAL 0.00 % [10] ZERO SPD. OFFSET **BIPOLAR** [25] ARMATURE I (A9) [182] FIELD I CAL 1.0000

CALIBRATION

Parameter Tag Range

ARMATURE V CAL. 20 0.9800 to 1.1000

Trim adjustment of the motor armature volts to give exactly 100% at the required actual voltage value (e.g. 460V etc.).

Note: - Primary voltage calibration is achieved by adjusting the NOM MOTOR VOLTS parameter (CONFIGURE DRIVE function block).

IR COMPENSATION 21 0.00 to 100.00 %

Compensation for motor IR drop to improve regulation when using armature voltage feedback as the speed feedback. This is also used in field weakening applications to improve dynamic response and speed holding stability, refer to "Initial Start-up Routine" in Chapter 4, Item 16.

ANALOG TACH CAL 23 0.9800 to 1.1000

Trim adjustment of the motor speed to give exactly 100% at the required actual speed value (e.g. 1500 RPM etc). *Note: Primary tacho calibration is achieved by adjusting SW1 - 3 on the tacho calibration board.*

ZERO SPD. OFFSET 10 -5.00 to 5.00 %

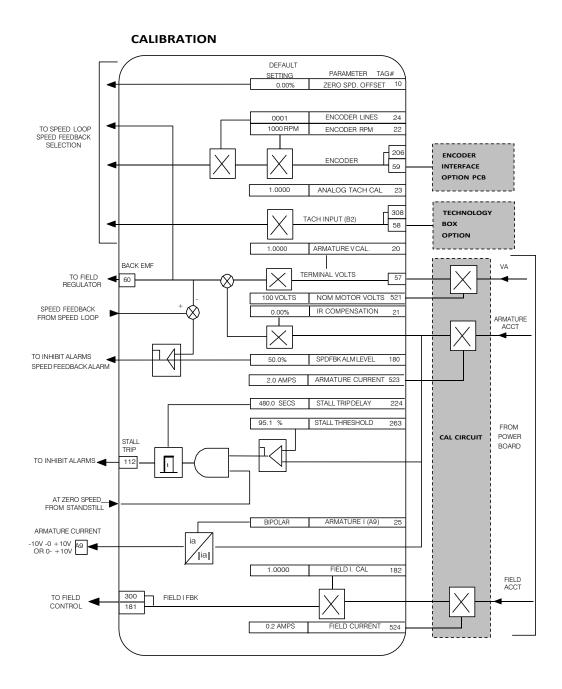
If the speed feedback is not zero when the motor is stationary (possibly due to hardware offsets etc.) the setting of this parameter to the value of the offset will result in a zero reading from the speed feedback.

ARMATURE I (A9) 25 UNIPOLAR / BIPOLAR

Selects operation of the current meter output (terminal A9), either bipolar or unipolar.

Bipolar mode: +10V = 200% output current forward, -10V = 200% output current reverse

Unipolar mode : +10V = 200% output current


FIELD I CAL. 182 0.9800 to 1.1000

Trim adjustment of the motor field current to give exactly 100% at the required actual current value (e.g. 1.5A etc.). Note:- Primary field calibration is achieved by adjusting the FIELD CURRENT parameter (CONFIGURE DRIVE function block).

D-24 Programming

CALIBRATION				
Parameter	Tag	Range		
TERMINAL VOLTS	57	x % (h)		
Refer to Chapter 6: "The Keypad" - The	Keypad Menus (DIAGNOSTICS).			
UNFIL. TACH INPUT	58	−.x % (h)		
Refer to Chapter 6: "The Keypad" - The	Keypad Menus (DIAGNOSTICS).			
BACK EMF	60	x % (h)		
Refer to Chapter 6: "The Keypad" - The Keypad Menus (DIAGNOSTICS).				

Functional Description

C-26 Programming

MMI Menu Map

SETUP PARAMETERS

2 SERIAL LINKS

3 SYSTEM PORT (P3)

MODE

GROUP ID (UID)

UNIT ID (UID)

ERROR REPORT

BAUD RATE

MMI Menu Map

FUNCTION BLOCKS

2 COMMUNICATIONS

COMMS PORT

4 COMMS PORT 3

MODE BAUD RATE

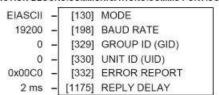
GROUP ID (GID)
UNIT ID (UID)

ERROR REPORT

REPLY DELAY

COMMS PORT

Use this block to configure the drive's P3 port.


Refer to Appendix A: "Serial Communications" - System Port P3 for further information.

The P3 port is a non-isolated serial communications port built in to the drive's Control Board.

It is used off-line (while the drive is stopped) for transferring and saving drive configuration files using a personal computer (PC) running a serial communications program.

You can also use the P3 port to transfer configuration files by connecting to a PC running the Windows TM compatible software package "CACT". Refer to the CACT manual.

FUNCTION BLOCKS\COMMUNICATIONS\COMMS PORT\COMMS PORT 3

CO	$\mathbf{R}\mathbf{A}$	$\mathbf{R}\mathbf{\Lambda}$	C	D		D'	т
	IVI	IVI	3		U	$\mathbf{\Gamma}$	ц,

Parameter Tag Range

MODE 130 See below

Used the set the protocol on this port.

0: DISABLED

1: MASTER

2:SLAVE

3 : EIASCII

4: EIBINARY

BAUD RATE 198 See below

329

Transmission rate. Options available are:

0:300

1:600

2:1200

3:2400

4:4800

5:9600 (default)

6:19200

7:38400

8:57600

9:115200

The DC900P Drives protocol group identity address.

GROUP ID (GID)

0 to 7

COMMS PORT		
Parameter	Tag	Range
UNIT ID (UID)	330	0 to 255
The DC900P Drives protocol un	t identity address.	
ERROR REPORT	332	0x0000 to 0xFFFF
Displays the last error as a hexad "Serial Communications" - Refer	.	is parameter will set the value to >00C0 (No Error). Refer to Appendix A:
DELAY	1175	0 to 255 ms
A programmable delay inserted by	by the drive before replying to a requ	est.

C-28 Programming

MMI Menu Map

CONFIGURE DRIVE

CONFIGURE ENABLE
NOM MOTOR VOLTS
ARMATURE CURRENT
FIELD CURRENT

MMI Menu Map

SERIAL LINKS

2 SYSTEM PORT (P3)
DUMP CHANGED

MMI Menu Map

- FUNCTION BLOCKS
- 2 MISCELLANEOUS
- 3 CONFIGURE DRIVE

AUTOMATIC SAVE
UDP USE OP PORT
EMULATE 900 P
DEBOUNCE DIGIN

CONFIGURE DRIVE

This block contains many of the parameters required for configuring the drive.

NOTE The CONFIGURE DRIVE menu on the MMI contains a different set of parameters, for set-up using the keypad.

CONFIGURE ENABLE: The operation of the Block Diagram is suspended and all Keypad LEDs will flash whilst CONFIGURE ENABLE = TRUE.

NOTE The CONFIGURE ENABLE parameter is also available in the following MMI menus for ease of use: CALIBRATION, CONFIGURE I/O

FUNCTION BLOCKS\MISCELLANOUS\CONFIGURE DRIVE

DISABLED	_	[39]	CONFIGURE ENABLE
100 V	_	[521]	NOM MOTOR VOLTS
1.0 A	-	[523]	ARMATURE CURRENT
0.2 A	-	[524]	FIELD CURRENT
FALSE	-	[1220]	AUTOMATIC SAVE
FALSE	-	[1169]	DUMP CHANGED
FALSE	_	[628]	UDP USE OP PORT
TRUE	_	[1172]	DEBOUNCE DIGIN

CONFIGURE DRIVE

Parameter Tag Range

CONFIGURE ENABLE 39 FALSE / TRUE

Selects Operating Mode (FALSE) or Configuration Mode (TRUE). Refer to "Modifying a Block Diagram", page D-1.

NOM MOTOR VOLTS 521 100 to 875 VOLTS

Sets the 100% value for Armature Volts VA. Set this value to match the motor in use. (Refer to ARMATURE V CAL in the CALIBRATION function block).

ARMATURE CURRENT 523 Product code dependent AMPS

Sets the 100% value for Armature Current IA. Set this value to match the motor in use.

FIELD CURRENT 524 Product code dependent AMPS

Sets the 100% value for Field Current IF. Set this value to match the motor in use. Note: this should be set to a minimum value if in Field Voltage control - see FLD. CTRL MODE in the FIELD CONTROL function block.

AUTOMATIC SAVE 1220 FALSE/TRUE

When TRUE, changes made to parameters using the operator station are automatically saved to the drive's non-volatile memory.

DUMP CHANGED 1169 FALSE /TRUE

This parameter is used in conjunction with DUMP MMI (TX) and DUMP BLOCKS. When TRUE, only those parameters that have been modified from their default value are included in the dump.

UDP USE OP PORT 628 FALSE/TRUE

When TRUE the UDP transfer will be re-directed to the operator station port.

DEBOUNCE DIGIN 1172 FALSE/TRUE

When TRUE the drive adds a 3ms debounce filter to the digital inputs. This affects terminals C3 to C8, B8 and B9. The hardware connection between terminal B9, (COAST STOP) and the control of the external contactor is not affected.

1 SETUP PARAMETERS

2 CURRENT LOOP

MAIN CURR. LIMIT
PROP. GAIN
INT. GAIN
DISCONTINUOUS
ADDITIONAL DEM
BIPOLAR CLAMPS

REGEN ENABLE MASTER BRIDGE

POS. I CLAMP IN NEG. I CLAMP IN

I DMD. ISOLATE

CUR. LIMIT/SCALER

MMI Menu Map

DIAGNOSTICS

CURRENT DEMAND
CURRENT FBK. AMPS
laFbk UNFILTERED
laDmd UNFILTERED
POS. I CLAMP
NEG. I CLAMP
ACTUAL POS I LIM
ACTUAL NEG I LIM
AT CURRENT LIMIT

MMI Menu Map

FUNCTION BLOCKS

BACK EMF

2 MOTOR CONTROL

3 CURRENT LOOP

PHASE ANGLE @ E
ISOL DMD SOURCE

CURRENT LOOP

Use this to setup the drive's conventional current/torque loop.

It takes the current demand, imposes limits through four clamps, and then uses a PI loop to control the output.

The four separate clamps - current profile, inverse time overload, bipolar clamps and main current clamp - the clamps are in series and lowest clamp takes effect. The resultant clamp value can be seen in the diagnostics ACTUAL POS I LIM and ACTUAL NEG ILIM.

The internal inputs to this block are:

- the current demand from the speed loop or terminal A3 (selected via IDMD. ISOLATE)
- the current limit clamps from CURRENT PROFILE and INVERSE TIME (note that the bipolar clamps and main current clamp are resident in the CURRENT LOOP block)
- current feedback from CALIBRATION.

The default configuration uses DIGIN 1 and DIGIN 3 for switching modes (BIPOLAR CLAMPS and I DMD. ISOLATE respectively), ANIN 5 for setting the symmetrical positive and negative current clamps.

FUNCTION BLOCKS\MOTOR CONTROL\CURRENT LOOP

			ΑT	CURRENT LIMIT	[42]	- FALSE
			la	md UNFILTERED	[66]	- 0.00 %
			CL	RRENT DEMAND	[299]	- 0.00 %
			la	Fbk UNFILTERED	[65]	- 0.0 %
			CUF	RENT FBK.AMPS	[538]	- 0.0 A
				MASTER BRIDGE	[527]	- TRUE
				BACK EMF	[1173]	- 0.00 V
			PH	ASE ANGLE @ E	[1174]	- 0.00 DEG
				POS. I CLAMP	[87]	- 0.0 %
				NEG. I CLAMP	[88]	- 0.0 %
			Α	CTUAL POS I LIM	[67]	- 0.0 %
			A	CTUAL NEG I LIM	[61]	- 0.0 %
00.00	%	_	[15]	CUR. LIMIT/SCAL	ER	
10.00	%	-	[421]	MAIN CURR. LIMI	Т	
45.	00	-	[16]	PROP. GAIN		
3.	50	-	[17]	INT. GAIN		
12.00	%	-	[137]	DISCONTINUOUS	6	
0.00	%	-	[30]	ADDITIONAL DEM	1	
				BIPOLAR CLAMPS	S	
(REGE	N)	-	[201]	REGEN ENABLE		
250.00	%	-	[301]	POS. I CLAMP IN		
			0.5000000000000000000000000000000000000	NEG. I CLAMP IN		
				I DMD. ISOLATE		
IN 2 (A	43)	-	[1275]	ISOL DMD SOUR	CE	

DI

DI

AN

4Q (

CURRENT LOOP

Parameter	Tag	Range
CUR. LIMIT/SCALER	15	0.00 to 200.00 %
Current limit scaler. It scales bipolar/u	nipolar clamps. To achieve	200% current limit, the current limit scaler should be set to 200%.
MAIN CURR LIMIT	421	0.00 to 200.00 %

Indian dorth. Ellin 1 421 0.00 to 200.00

Independent symmetric current clamp. Sets symmetric clamps outside scaling from the CUR. LIMIT/SCALER parameter.

PROP GAIN

16

0.00 to 200.00

Proportional gain control for armature current PI loop. This parameter is set during the autotune function.

INT. GAIN 17 0.00 to 200.00

Integral gain control for armature current PI loop, set during the autotune function.

C-30 Programming

	Tag	Range
DISCONTINUOUS	137	0.00 to 200.00 %
Sets the boundary current between the performance of the adaptive algorithm	<u> </u>	operation. This is set during the autotune function and affects the
ADDITIONAL DEM	30	-200.00 to 200.00 %
Additional current demand input.		
RIDOLAR CLAMPS	90	DIGABLED / ENABLED

BIPOLAR CLAMPS DISABLED / ENABLED 90

Selects between bipolar (asymmetric) or unipolar (symmetric) current clamps for the 4 quadrants of operation. Default setting of DISABLED means UNIPOLAR clamps selected.

> DISABLED - unipolar (symmetric) ENABLED - bipolar (asymmetric)

With BIPOLAR CLAMPS disabled, the clamps are symmetrical and are set by POS. I CLAMP IN. With BIPOLAR CLAMPS enabled, the clamps are assymmetrical, bipolar. In bipolar mode, POS. I CLAMP IN sets the maximum positive current and NEG. I CLAMP IN sets the maximum negative current. Both clamps can be positive or negative, however, the POS I CLAMP IN value is internally prevented from going numerically below the NEG I CLAMP IN. CUR. LIMIT/SCALER scales both POS. I CLAMP IN and NEG. I CLAMP IN.

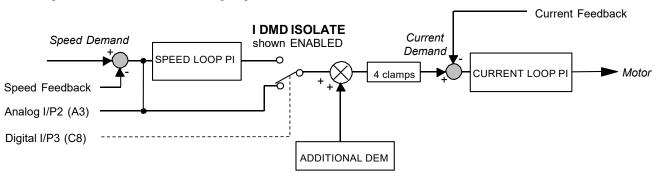
REGEN ENABLE See below

When REGEN ENABLE is 2Q (NON-REGEN), negative current demands are clamped to zero. Current feedback is subtracted from the current demand and the result is controlled by the PI loop. The result provides SCR phase angle control.

> 2Q (NON-REGEN) - non-regenerative (2-quadrant) 4Q (REGEN) - regenerative (4-quadrant)

POS. I CLAMP IN 301 -200.00 to 200.00 % Positive current clamp when BIPOLAR CLAMPS is ENABLED. -200.00 to 200.00 % **NEG. I CLAMP IN**

Negative current clamp when BIPOLAR CLAMPS is ENABLED.


Note on bipolar current clamps: these clamps in bipolar mode can cross-over onto the same quadrant. The POS. I CLAMP IN value is internally prevented from going numerically below the NEG. I CLAMP IN.

CURRENT LOOP

Parameter Tag Range
I DMD. ISOLATE 119 DISABLED / ENABLED

Speed loop bypass; the current demand is taken from ANIN 2 (A3).

With I DMD. ISOLATE disabled, the current loop uses the current demand from the speed loop. With I DMD. ISOLATE enabled, ANALOG I/P 2, terminal A3, supplies the current demand. With default scaling, 10V dc on terminal A3 is 100% current demand. An additional current input, ADDITIONAL DEM, can be added to the current demand. The simplified diagram below, with reference to the default Block Diagram, shows how the I DMD ISOLATE parameter selects the controlling loop.

AT CURRENT LIMIT	42	FALSE / TRUE
Refer to Chapter 6: "The Keypad" - T	The Keypad Menus (DIAGNOSTICS).	
laDmd UNFILTERED	66	x % (h)
Refer to Chapter 6: "The Keypad" - T	The Keypad Menus (DIAGNOSTICS).	
CURRENT DEMAND	299	xx %
Refer to Chapter 6: "The Keypad" - T	The Keypad Menus (DIAGNOSTICS).	
laFbk UNFILTERED	65	x % (h)
Refer to Chapter 6: "The Keypad" - T	The Keypad Menus (DIAGNOSTICS).	
CURRENT FBK. AMPS	538	x AMPS
Refer to Chapter 6: "The Keypad" - T	The Keypad Menus (DIAGNOSTICS).	
MASTER BRIDGE	527	FALSE/TRUE
A diagnostic indicating currently activated	ve bridge; master = TRUE, slave = FALSE.	
BACK EMF	1173	– .x V
Refer to Chapter 6: "The Keypad" - T	The Keypad Menus (DIAGNOSTICS).	
PHASE ANGLE @ E	1174	x DEG

The motor back EMF, presented as the angle at which the supply volts matches it. This is the instantaneous angle above which firing the thyristor would just start to make armature current.

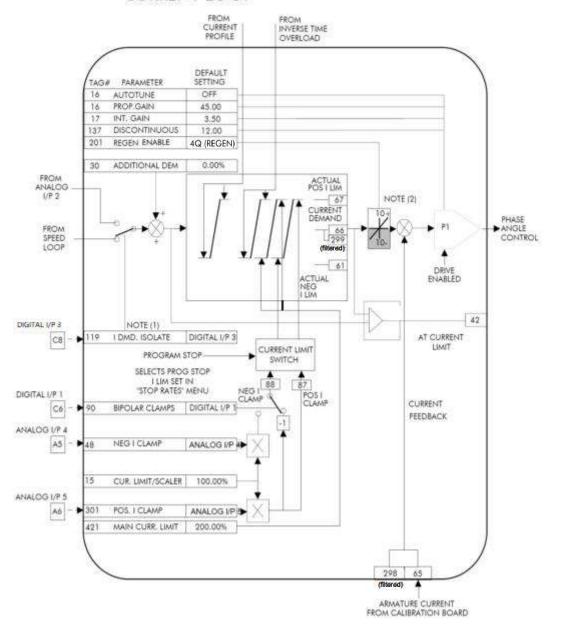
C-32 Programming

CURRENT LOOP		
Parameter	Tag	Range
POS. I CLAMP	87	x %
Refer to Chapter 6: "The Keypad	" - The Keypad Menus (DIAGNOSTICS).	
NEG. I CLAMP	88	x %
Refer to Chapter 6: "The Keypad	" - The Keypad Menus (DIAGNOSTICS).	
ACTUAL POS I LIM	67	x %
Refer to Chapter 6: "The Keypad	" - The Keypad Menus (DIAGNOSTICS).	
ACTUAL NEG I LIM	61	x %
Refer to Chapter 6: "The Keypad	" - The Keypad Menus (DIAGNOSTICS).	
ISOL DMD SOURCE	1275	ANIN 2 (A3) / FIELD I DEMAND

Selects the source of the isolated current demand.

- > Setting ANIN 2 (A3) makes use of the A3 analogue input terminal as the current demand.
- > Setting FIELD I DEMAND makes use of the current demand (%) at the field current controller, as the percentage armature current demand.

The use of this parameter is typically combined with parameters BEMF SOURCE, BEMF INPUT and 3-PHASE FIELD to apply the drive to field weakening control of a motor field.


Functional Description

Note 1: I DMD. ISOLATE removes speed loop demand and selects analog I/P 2 as current regulator demand.

I DMD. ISOLATE is overridden by program stop and stop to return drive to speed regulation.

Note 2: REGEN ENABLE = 2Q (NON-REGEN) prevents negative current demand. Non-regenerative drives use non-regen mode irrespective of the REGEN ENABLE parameter setting.

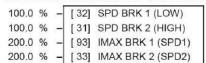
CURRENT LOOP

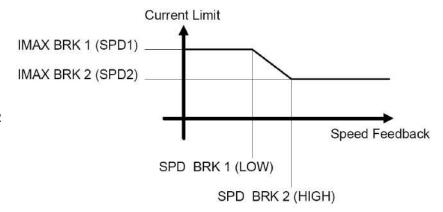
1 SETUP PARAMETERS

2 CURRENT PROFILE

SPD BRK1 (LOW)
SPD BRK2 (HIGH)
IMAX BRK1(SPD1)
IMAX BRK2(SPD2)

CURRENT PROFILE


Use this to clamp the current limit for applications where motors have a reduced ability to commutate armature current at low field currents.


Normally this is required when using Field Weakening, although some motors exhibit commutation limitations at higher speeds even with rated field current.

The input to the block is SPEED FEEDBACK from the SPEED LOOP function block. The output of the block changes the current limit clamp in the current loop.

- When SPEED FEEDBACK exceeds SPD BRK 1 (LOW), the current profile begins scaling the current limit as set by IMAX BRK 1 (SPD1).
- As the SPEED FEEDBACK increases toward SPD BRK2 (HIGH), the current limit is reduced linearly toward IMAX BRK2 (SPD2).
- When the speed exceeds SPD BRK2 (HIGH), the current limit remains at the IMAX BRK2 (SPD2) setting.

FUNCTION BLOCKS\MOTOR CONTROL\CURRENT PROFILE

CURRENT PROFILE		
Parameter	Tag	Range
SPD BRK 1 (LOW)	32	0.0 to 100.0 % (h)
This is the motor speed at which cu	rrent limit profiling begins.	
SPD BRK 2 (HIGH)	31	0.0 to 100.0 % (h)
This is the upper speed limit at whi	ch current limit profiling ends.	
IMAX BRK 1 (SPD1)	93	0.0 to 200.0 % (h)

This sets the current limit value at or below speed break-point 1, provided the other current limit clamps (inverse time overload, bipolar clamps and main current clamps) are greater than this setting.

IMAX BRK 2 (SPD2) 33 0.0 to 200.0 % (h)

This sets the current limit value at or above speed break-point 2, provided the other current limit clamps setting (inverse time overload, bipolar clamps and main current clamps) are greater than this.

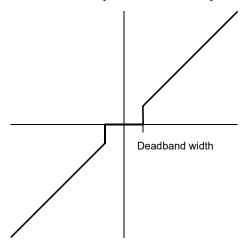
1 SETUP PARAMETERS

2 SETPOINT SUM 1

DEADBAND WIDTH

INPUT 1

MMI Menu Map


FUNCTION BLOCKS

2 SETPOINT FUNCS

3 DEADBAND OUTPUT

DEADBAND

When the input is within the deadband, the output is clamped to zero to ignore any noise. The limits are symmetrical around zero. The limits are set by the DEADBAND parameter.

FUNCTION BLOCKS\SETPOINT FUNCS\DEADBAND

DEADBAND				
Parameter	Tag	Range		
INPUT 1	100	-200.00 to 200.00 %		
Input 1 value. By default this is connected to Analog Input 1 (terminal A2).				
DEADBAND	131	0.0 to 100.0 %		
Range within which the output is clamped at zero.				
OUTPUT	700	xx %		
Modified value of input.				

C-42 Programming

MMI Menu Map 1 FUNCTION BLOCKS 2 MISCELLANEOUS 3 DEMULTIPLEXER INPUT OUTPUT 0 **OUTPUT 1 OUTPUT 2 OUTPUT 3 OUTPUT 4 OUTPUT** 5 **OUTPUT** 6 **OUTPUT 7 OUTPUT 8 OUTPUT 9 OUTPUT 10 OUTPUT 11 OUTPUT 12 OUTPUT 13 OUTPUT 14** OUTPUT 15

DEMULTIPLEXER

The demultiplexer function block splits the input word into 16 individual bits.

This may be used to extract the individual trip bits from the ACTIVE TRIPS parameter, for example.

FUNCTION BLOCKS\MISCELLANEOUS\DEMULTIPLEXER OUTPUT 0 [880] - FALSE OUTPUT 1 [881] - FALSE OUTPUT 2 [882] - FALSE OUTPUT 3 [883] - FALSE OUTPUT 4 [884] - FALSE OUTPUT 5 [885] - FALSE OUTPUT 6 [886] - FALSE **OUTPUT 7** [887] - FALSE OUTPUT 8 [888] - FALSE [889] - FALSE OUTPUT 9 OUTPUT 10 [890] - FALSE **OUTPUT 11** [891] - FALSE **OUTPUT 12** [892] - FALSE [893] - FALSE OUTPUT 14 [894] - FALSE OUTPUT 15 [895] - FALSE 0000 - [896] INPUT

DEMULTIPLEXER		
Parameter	Tag	Range
INPUT	896	0x0000 to 0xFFFF
The input to be split into its componen	tbits.	
OUTPUT 0 to OUTPUT 15	880 to 895	FALSE / TRUE
Each output returns the corresponding	bit of the 16 bit input word.	

SETUP PARAMETERS

SPECIAL BLOCKS

NAMETER CALC. 3

> LINE SPEED REEL SPEED MIN DIAMETER MIN SPEED RESET VALUE EXTERNAL RESET RAMP RATE DIAMETER

MOD OF LINE SPD

MOD OF REEL SPD

UNFILT DIAMETER

MMI Menu Map

1 SETUP PARAMETERS

2 SPECIAL BLOCKS

3 TAPER CALC.

TAPER TENSION SPT TAPERED DEMAND **TENSION TRIM** TOT. TENS. DEMAND

DIAMETER CALC.

This block performs three functions.

DIAMETER CALC: Used to calculate roll diameters in winder applications.

TAPER CALC: Used to profile the tension demand with diameter.

TENS+COMP CALC: Used to provide additional torque to compensate for static and dynamic

friction, as well as load inertia.

These three functions are combined into one function block as they are functionally closely coupled.

DIAMETER CALC calculates the diameter of a reel as a function of the reel speed and the line speed. The resulting diameter is a percentage of the maximum full roll diameter. A lead section, adjacent line section, or surface driven speed sensing device is required to supply the line speed signal. The winder or unwind drive's motor speed feedback provides the reel speed input.

The ratio of the minimum core diameter to the maximum roll diameter determines the operating range of the diameter calculator. Set MIN DIAMETER to that ratio using the expression:

Minimum Core Outside Diameter ÷ Maximum Full Roll Diameter x 100%

The magnitude of LINE SPEED is compared with MIN SPEED to determine when the diameter calculator will operate:

- When LINE SPEED is above MIN SPEED the calculator is on
- When LINE SPEED is below MIN SPEED, DIAMETER is held at the last calculated diameter

When EXTERNAL RESET is ENABLED, RESET VALUE is used as the diameter output.

NOTE In turret winder applications, LINE SPEED will usually be above MIN SPEED. During roll changes, EXTERNAL RESET must be held ENABLED for the new spindle until the web has been transferred and the diameter is calculated properly. RESET VALUE must be set to the appropriate new core value for a rewind, or new roll diameter for an unwind.

RAMP RATE adjusts the filtering of the diameter output. Its setting is the time it takes for a 100% change in DIAMETER. For example, at the default setting of 5.0 seconds, a 50% step change in diameter would take 2.5 seconds for the output diameter output to display the change.

FUNCTION BLOCKS\WINDER\DIAMETER CALC.

DIAMETER [427] - 0.00 % MOD OF LINE SPD [428] - 0.00 % MOD OF REEL SPD [429] - 0.00 % UNFILT DIAMETER [430] - 0.00 % TAPERED DEMAND [452] - 0.00 % TOT. TENS. DEMAND [441] - 0.00 % INERTIA COMP O/P [485] - 0.00 % OUTPUT [706] - 0.00 %

0.00 % [424] LINE SPEED 0.00 % [437] REEL SPEED 10.00 % [425] MIN DIAMETER 5.00 % [426] MIN SPEED 10.00 % [462] RESET VALUE FALSE

[463] EXTERNAL RESET 5.0 s - [453] RAMP RATE [438] TAPER 0.00 %

[439] TENSION SPT. 0.00 % [440] TENSION TRIM 0.00 % 0.00 % [487] STATIC COMP

0.00 % [488] DYNAMIC COMP TRUE [489] REWIND

0.00 % [479] FIX. INERTIA COMP 0.00 % [480] VAR. INERTIA COMP 100.00 % [481] ROLL WIDTH/MASS [498] LINE SPEED SPT

0.00 % 10 - [482] FILTER T.C. [483] RATE CAL 10.00

0.00 % [484] NORMALISED dv/dt - [486] TENSION SCALER 1.0000

C-44 Programming

MMI Menu Map

SETUP PARAMETERS

2 SPECIAL BLOCKS

3 TENS+COMP CALC.

STATIC COMP DYNAMIC COMP REWIND FIX. INERTIA COMP

VAR. INERTIA COMP ROLL WIDTH/MASS

LINE SPEED SPT

FILTER T.C.

RATE CAL

_NORMALISED dv/dt

INERTIA COMP O/P
TENSION SCALER

MMI Menu Map

1 FUNCTION BLOCKS

2 WINDER

OUTPUT

DIAMETER CALC.

Parameter	Tag	Range
LINE SPEED	424	-105.00 to 105.00 %

This will usually be configured to be the analog tacho input and scaled appropriately during calibration.

REEL SPEED 437 -105.00 to 105.00 %

This will usually be configured to be the drive's own speed feedback, i.e. encoder or armature volts feedback.

MIN DIAMETER 425 0.00 to 100.00 %

Set to the minimum core diameter (normally the empty core diameter) as a percentage of the maximum roll diameter.

MIN SPEED 426 0.00 to 100.00 %

This is the minimum LINE SPEED level below which the diameter calculation is frozen.

RESET VALUE 462 0.00 to 100.00 %

Normally for winders this will be set to the MIN DIAMETER value. It is the diameter preset used when changing rolls. This value will be preloaded into the ramp (filter) output when EXTERNAL RESET is enabled.

EXTERNAL RESET 463 DISABLED / ENABLED

Sets and holds the diameter to the RESET VALUE when ENABLED.

RAMP RATE 453 0.1 to 600.0 s

This is used to smooth the output of the diameter calculator.

TAPER 438 -100.00 to 100.00 %

This defines the amount of tapering in the tension demand with diameter variation. When TAPER is positive, the tension demand is hyperbolically decreased as diameter increases.

TENSION SPT. 439 0.00 to 100.00 %

This is the required tension setpoint.

TENSION TRIM 440 -100.00 to 100.00 %

This is the additional tension demand in the form of a trim.

STATIC COMP 487 -300.00 to 300.00 %

Static friction compensation set-up parameter.

DYNAMIC COMP 488 -300.00 to 300.00 %

Dynamic friction compensation set-up parameter.

REWIND 489 DISABLED / ENABLED

Switches the sign of the friction compensations when the motor changes direction. Set to DISABLED only when the winder reverses.

SETUP PARAMETERS

2 SPECIAL BLOCKS

3 TENS+COMP CALC.

STATIC COMP DYNAMIC COMP REWIND FIX. INERTIA COMP VAR. INERTIA COMP ROLL WIDTH/MASS LINE SPEED SPT FILTER T.C. RATE CAL NORMALISED dv/dt

INERTIA COMP O/P

TENSION SCALER

DIAMETER CALC.		
Parameter	Tag	Range
FIX. INERTIA COMP	479	-300.00 to 300.00 %
Fixed inertia compensation set-upp	parameter.	
VAR. INERTIA COMP	480	-300.00 to 300.00 %
Variable inertia compensation set-u	ip parameter.	
ROLL WIDTH/MASS	481	0.00 to 100.00 %
Scales the inertia fixed and variable	compensations based on roll	vidth. 100% = maximum roll width.
LINE SPEED SPT	498	-105.00 to 105.00 %
Used to calculate the line speed acc	eleration rate value for the fixe	d and variable inertia compensations.
FILTER T.C.	482	0 to 20000

The line speed acceleration rate value is calculated from the line speed input. The calculated rate value may have a large ripple content that can disturb the motor torque. The rate signal is therefore filtered, and this filter has a time constant set by this parameter.

RATE CAL 483 -100.00 to 100.00

Scales the inertia compensation acceleration/deceleration rate value to 100% of the maximum line ramp rate. This parameter should be set to the maximum time required to ramp from zero to full speed in seconds. If RATE CAL = 0.00, then this parameter is set externally through NORMALISED dv/dt, otherwise, RATE CAL sets the inertia compensation acceleration/deceleration rate.

Note - Inertia compensation does not work well for line ramp rates above 100 seconds and therefore this parameter is limited to 100.00.

-300.00 to 300.00 % NORMALISED dv/dt 484

Useful for large line ramp rates (>100 Secs). Tag an external signal to NORMALISED dv/dt to set the inertia compensation acceleration/deceleration rate externally from the drive. Useful for ramp rates exceeding 100 seconds. The external signal must be normalised to 100% = the maximum line ramp rate. Active *only* when RATE CAL = 0.00.

TENSION SCALER	486	-3.0000 to 3.0000
Scales the TENSION DEMAND which	h is directly connected from	the TAPER CALC. function block.
DIAMETER	427	xx %
This is the output of the block.		
MOD OF LINE SPEED	428	xx %
Modulus of line speed.		
MOD OF REEL SPEED	429	xx %
Modulus of reel speed.		
UNFILTERED DIAMETER	430	xx %
Unfiltered value of "diameter" (before	RAMP RATE filter).	
TAPERED DEMAND	452	−.xx %
This is the output of the TAPER calcula	ation on the TENSION SPT	(before adding TENSION TRIM).

C-46 Programming

MMI Menu Map

1 SETUP PARAMETERS

2 SPECIAL BLOCKS

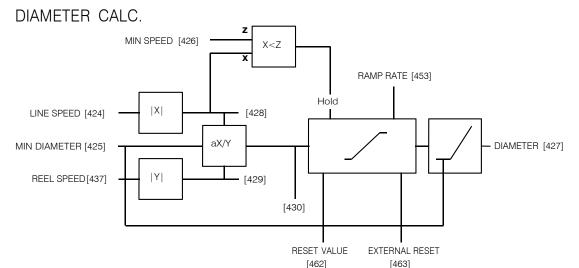
3 TENS+COMP CALC.

STATIC COMP DYNAMIC COMP REWIND FIX. INERTIA COMP VAR. INERTIA COMP ROLL WIDTH/MASS LINE SPEED SPT FILTER T.C. RATE CAL NORMALISED dv/dt INERTIA COMP O/P

TENSION SCALER

DIAMETER CALC.

Parameter	Tag	Range	
TOT. TENS. DEMAND	441	xx %	
This is the final output of this block (total tension demand) which can be connected to the appropriate points in the block diagram.			

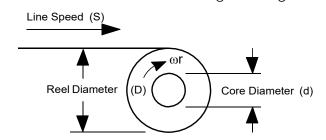

INERTIA COMP O/P 485 -.xx %

Monitors the sum of all inertia compensations.

OUTPUT 706 -.xx %

The sum of the diameter-scaled TENSION DEMAND after the TENSION SCALER scaling and the compensation losses. For open loop winder applications, connect this output to the TORQUE DEMAND (Tag 432) in the TORQUE CALC. function block. (This output is located in the SYSTEM::CONFIGURE I/O::BLOCK DIAGRAM menu).

Functional Description



Circumference =
$$\pi D$$
 or Line Speed (S) = Reel Speed (ωr) x D

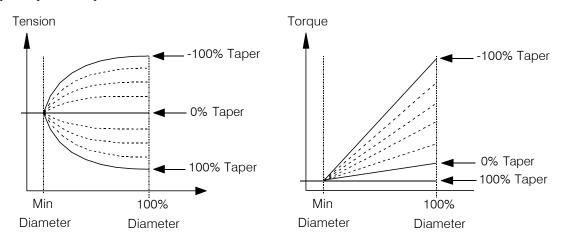
Thus D = $\frac{S}{\omega r}$

i.e. D \propto $\frac{\text{Line Speed (S)}}{\text{Reel Speed (}\omega r\text{)}}$

Therefore with the web intact we can calculate the diameter from the two speeds.

TAPER CALC

Use this to profile the tension demand with diameter.


The function uses two inputs, tension setpoint and taper setpoint, to create the tension demand. The operator usually controls these setpoints.

Taper is a common requirement for winders. It reduces the tension as the roll diameter increases.

A profiler adjusts the tension using the equation:

Tapered Demand = Tension Spt
$$\times$$
 $\left[100\% - \frac{\text{Taper}}{\text{Diameter}} \times \left(\text{Diameter} - \text{Min Diameter} \right) \right]$

to yield a hyperbolic taper output. The taper tension characteristics are shown below:

The result is multiplied by TENSION SPT. to get TAPER DEMAND. When the taper setpoint is at 100%, the motor produces constant torque. That is, a constant torque from core to full roll, and the tension falls off as the roll builds.

TENSION TRIM allows the tension demand to be adjusted, for example, when using closed loop trim. The result is TOT. TENS DEMAND.

Permanently linked to Diameter Calc. Diameter Taper Function Tension Spt. [439] Taper Function Tension Trim [440] Taper [438]

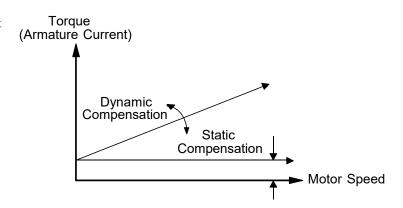
TENS+COMP CALC

This provides additional torque to compensate for static and dynamic friction, as well as the load inertia.

Add these losses to the diameter-scaled tension demand to produce a compensated torque demand for open loop winder applications.

The inputs to this function are DIAMETER, TOT. TENS. DEMAND, and SPEED FEEDBACK from the SPEED LOOP function block.

For open loop winder applications, connect OUTPUT to TORQUE DEMAND (Tag 432) in the TORQUE CALC. function block.

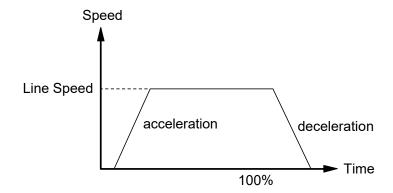

Static and Dynamic Frictional Losses

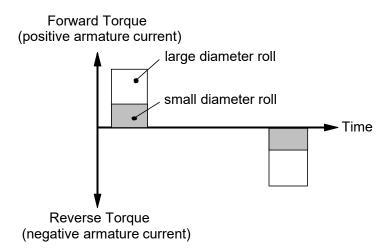
Static and dynamic friction are due to gearbox resistance and mechanical binding in the winder spindle and motor bearings. Both absorb motor output torque and require compensation to maintain accurate winder tension.

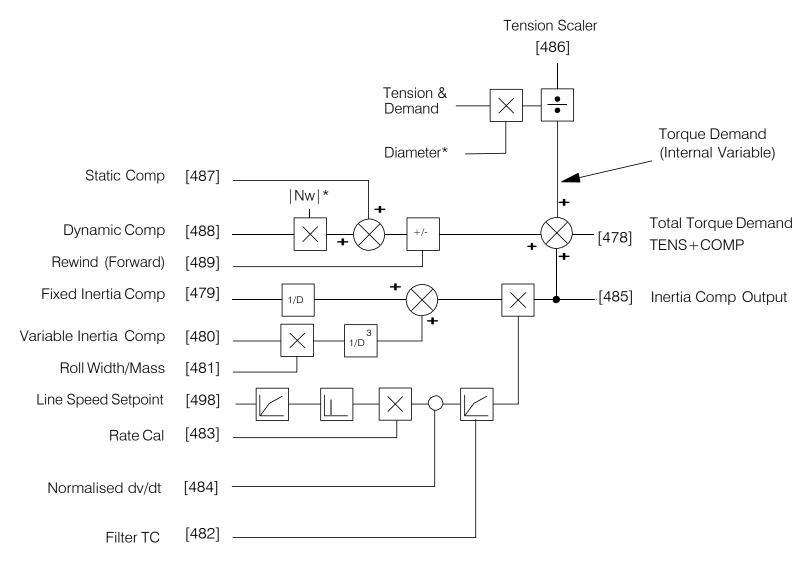
Static friction, or "stiction", is a constant offset most noticeable at or near zero speed. The compensation torque required to overcome static friction is fixed over an entire operating speed range. You can ignore "stiction" for winders which do not normally operate at zero speeds.

Dynamic friction results from friction losses within the drive train, which includes gearboxes and chain belting linkages. The oil viscosity in gearboxes and windage losses in the motor armature fans also contribute to dynamic frictional losses.

The effects of static and dynamic friction are shown opposite.


Inertia Compensation


Many winders need inertia compensation to add or subtract torque during acceleration and deceleration to maintain constant tension, especially at large roll diameters. Without compensation, the tension holding capability of open loop winders diminishes during speed changes causing tensionsag.


The inertia compensation characteristics is shown opposite.

For winder applications, inertia compensation is split into two components:

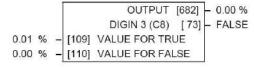
- 1. Fixed inertia compensation for the fixed motor, transmission and load components.
- 2. Variable inertia compensation for the changing roll inertia. This is especially necessary for high diameter build unwinds and winders.

- & Internally connected to Taper Calculator
- * Internally connected to Diameter Calculator

TENS + COMP Block Diagram

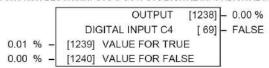
MMI Menu Map 1 SYSTEM 2 CONFIGURE I/O 3 DIGITAL INPUTS 4 DIGIN 1 (C6) 4 DIGIN 2 (C7) 4 DIGIN 3 (C8) VALUE FOR TRUE VALUE FOR FALSE

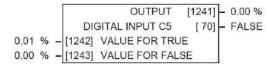
DIGITAL INPUTS


Use this block to control the digital operating parameters of the software.

The digital input can be configured to point to a destination location, and to set that destination TRUE or FALSE depending upon programmable values.

FUNCTION BLOCKS\INPUTS & OUTPUTS\DIGITAL INPUT\DIGITAL INPUT 1


FUNCTION BLOCKS\INPUTS & OUTPUTS\DIGITAL INPUT\DIGITAL INPUT 3


FUNCTION BLOCKS\INPUTS & OUTPUTS\DIGITAL INPUT\DIGITAL INPUT 2

FUNCTION BLOCKS\INPUTS & OUTPUTS\DIGITAL INPUT\DIGITAL INPUT 4

FUNCTION BLOCKS\INPUTS & OUTPUTS\DIGITAL INPUT\DIGITAL INPUT 5

-.xx %

DIGITAL INPUTS

OUTPUT

Parameter Tag		Range	
VALUE FOR TRUE	103, 106, 109, 1239	-300.00 to 300.00 %	
The output value when input is TRU	E, that is:		
Digital Input 2, to	erminal C6 = 24V (True) erminal C7 = 24V (True)		
VALUE FOR FALSE	erminal C8 = 24V (True) 104, 107, 110, 1240	-300.00 to 300.00 %	
The output value when input is FALS	SE, that is:		
Digital Input 1 to	erminal $C6 = 0V(False)$		

Digital Input 1, terminal C6 = 0V (False) Digital Input 2, terminal C7 = 0V (False) Digital Input 3, terminal C8 = 0V (False)

680, 681, 682, 1238

The output value, this is either VALUE FOR TRUE or VALUE FOR FALSE.

DIGIN 1 (C6) to DIGITAL INPUT C5 71, 72, 73, 69 OFF / ON

The Boolean representation of the actual voltage applied to the terminal.

Digital Input Examples

Using Digital Inputs with LOGIC Parameters

Logic parameters have values of 1/0: TRUE/FALSE, ON/OFF, ENABLED/DISABLED etc.

For example, the default connections in the drive allow the Digital Inputs to switch LOGIC parameters. These are the connections from:

- Terminal C6 to Tag 90 (BIPOLAR CLAMPS)
- Terminal C7 to Tag 118 (RAMP HOLD)
- Terminal C8 to Tag 119 (I DMD. ISOLATE)

In each case, the state of the terminal (24V or 0V) switches the destination parameter by sending a 1 or 0.

The format for the VALUE FOR TRUE and VALUE FOR FALSE parameters is in percent, thus 0.00% = 0 and 0.01% (or any other non-zero positive number) = 1.

Inverting the Input Signal

The default setting is for VALUE FOR TRUE to be 0.01% and VALUE FOR FALSE to be 0.00%. Inverting the digital input is therefore simple; set VALUE FOR TRUE to 0.00% and VALUE FOR FALSE to 0.01% (or any other non-zero number).

To do this:

- 1. Set CONFIGURE I/O::CONFIGURE ENABLE to TRUE
- 2. Set DIGIN 1 (C6)::VALUE FOR TRUE to 0.00%
- 3. Set VALUE FOR FALSE to 0.01%
- 4. Reset CONFIGURE I/O::CONFIGURE ENABLE to FALSE

Digital Input 1 now sends a 0 when the input signal is TRUE, and 1 when it is FALSE.

Using Digital Inputs with VALUE Parameters

Value parameters have values such as 100.00, or with units like 50.00%, 10.0 SECS etc.

You can use a Digital Input to send two fixed values to a VALUE parameter depending upon the state of the input terminal, 24V or 0V. You set the two fixed values you require in the VALUE FOR TRUE and VALUE FOR FALSE parameters.

For example, to connect Digital Input 1 to SPEED LOOP::SPD.PROP.GAIN:

- 1. Set CONFIGURE I/O::CONFIGURE ENABLE to TRUE
- 2. Find the tag number for SPD.PROP.GAIN either from the function block detail in this chapter, or from the Parameter Table: MMI Order refer to Appendix C. (It is 14).
- 3. Set DIGIN 1 (C6)::DESTINATION TAG to 14
- 4. Set VALUE FOR TRUE to 10.00%
- 5. Set VALUE FOR FALSE to 30.00%
- 6. Reset CONFIGURE I/O::CONFIGURE ENABLE to FALSE

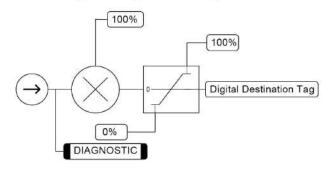
Digital Input 1 will now set SPD.PROP.GAIN to two values depending upon the state of the input signal:

- When the input terminal is at 24V, SPD.PROP.GAIN is set to 10.00
- When the input terminal is at 0V, SPD.PROP.GAIN is set to 30.00

DIGITAL INPUT C5

NOTE

Caution


If you are isolating power on the drive output using a DC contactor, you must use an auxiliary, normally-open contact connected to terminal C5 to immediately disable the drive's current loop when the contactor coil de-energises. Free-up terminal C5 for other uses **only** when isolating main power on the input side of the drive using an AC contactor.

Some 900 DRV models isolate power on the 900 drive output using a DC contactor, so you cannot use terminal C5 as an additional digital input.

Additional Digital Inputs

It is possible to use an Analog Input as a Digital Input to extend the number of Digital Inputs available. Again, 0.00% is regarded as Logic 0 and 0.01% (or any other non-zero positive value) is regarded as Logic 1.

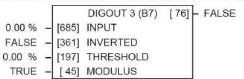
Using Analog I/P as Digital I/P

C-54 Programming

MMI Menu Map 1 SYSTEM 2 CONFIGURE I/O 3 DIGITAL OUTPUTS 4 DIGOUT 1 (B5) 4 DIGOUT 2 (B6) 4 DIGOUT 3 (B7) THRESHOLD (>) MODULUS SOURCE TAG

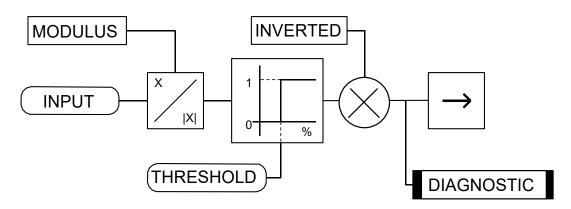
INVERTED

DIGITAL OUTPUTS


These function block allows you to output digital parameters within the software to other equipment.

A digital output can be configured to point to any digital value within the software system and to output information depending upon the status of that value.

FUNCTION BLOCKS\INPUTS & OUTPUT\DIGITAL OUTPUT\DIGITAL OUTPUT 1 FUNCTION BLOCKS\INPUTS & OUTPUT\DIGITAL OUTPUT\DIGITAL OUTPUT


FUNCTION BLOCKS\INPUTS & OUTPUTS\DIGITAL OUTPUT\DIGITAL OUTPUT 3

DIGITAL OUTPUTS Parameter Tag Range **INPUT** 683, 684, 685 -.xx % The unprocessed value to output. **INVERTED** 359, 360, 361 **FALSE / TRUE** Selects to invert the output when TRUE. **THRESHOLD** 195, 196, 197 -300.00 to 300.00 % (THRESHOLD (>)) The threshold which the input value must exceed to set the output to TRUE. **MODULUS** 43, 44, 45 **FALSE / TRUE** When TRUE, the absolute value of INPUT is used for the threshold test. DIGOUT 1 (B5) to DIGOUT 3 (B7) 74, 75, 76 OFF / ON The actual Boolean value sent to the output terminal.

Functional Description

Configurable Digital Outputs

Digital Output Examples

Using Digital Outputs with LOGIC Parameters

Logic parameters have values of 1/0: TRUE/FALSE, ON/OFF, ENABLED/DISABLED etc.

For example, the (logic) default connections in the drive allow the Digital Outputs to provide (source) 24V or 0V dc depending upon the state of following tag connections:

- Terminal B5, Digital Output 1 is linked to Tag Number 77 (AT ZERO SPEED)
- Terminal B6, Digital Output 2 is linked to Tag Number 122 (HEALTH LED)
- Terminal B7, Digital Output 3 is linked to Tag Number 125 (READY)

In each case, the state of the source parameter defines the voltage available at the terminal (TRUE = 24V, FALSE = 0V when INVERTED = FALSE). Inverting the digital output is simple; set INVERTED to TRUE.

C-56 Programming

Using Digital Outputs with VALUE Parameters (Up-to-speed Detector)

Value parameters have values such as 100.00, or with units like 50.00%, 10.0 SECS etc.

For example, to connect Digital Output 1 to read UNFIL.SPD.FBK:

- 1. Set CONFIGURE I/O::CONFIGURE ENABLE to TRUE
- 2. Find the tag number for UNFIL.SPD.FBK either from the function block detail in this chapter, or from the Parameter Table: MMI Order refer to Appendix C. (It is 62).
- 3. Set DIGITAL OUTPUTS::DIGOUT 1 (B5)::SOURCE TAG to 62
- 4. Set DIGITAL OUTPUTS::DIGOUT 1 (B5)::THRESHOLD(>) to 50.00%
- 5. Set DIGITAL OUTPUTS::DIGOUT 1 (B5)::MODULUS to TRUE
- 6. Set DIGITAL OUTPUTS::DIGOUT 1 (B5)::INVERTED to FALSE
- 7. Set CONFIGURE I/O::CONFIGURE ENABLE to FALSE

This option is useful for generating an "up-to-speed" output. The MODULUS removes the sign from the value (so -100 becomes 100). The THRESHOLD(>) parameter determines when the output is 24V or 0V dc (the input signal must exceed this setting for the output to go high). Set INVERTED to TRUE to invert the result of the output.

DRIVE INFO

FUNCTION BLOCKS\MISCELLANEOUS\DRIVE INFO

PRODUCT CODE [510] -1
FRAME ID [626] -0
VERSION NUMBER [155] -0x00000
1 - [545] PCODE ID

MMI Menu Map

1 SERIAL LINKS

MMI Menu Map

1 FUNCTION BLOCKS

2 MISCELLANEOUS

3 DRIVE INFO

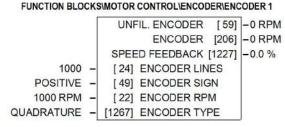
PCODE ID
PRODUCT CODE
FRAME ID

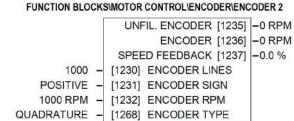
This block provides information to identify the drive hardware and firmwareversion.

DRIVE INFO				
Parameter	Tag		Range	
PCODE ID	545		0 to 100	
0: INVALID 1: DC 4Q 20A 2: DC 2Q 20A 3: DC 4Q 35A 4: DC 2Q 35A 5: DC 4Q 40A	sentation is guaranteed to be un 21: DC 4Q 35A D 22: DC 2Q 35A D 23: DC 4Q 80A D 24: DC 2Q 80A D 25: DC 4Q 120A D 26: DC 2Q 120A D	41: DC 4Q 450A D 42: DC 2Q 450A D 43: DC 4Q 750A D 43: DC 4Q 750A D 44: DC 2Q 750A D 45: DC 4Q 850A D 46: DC 2Q 850A D	61: DC 4Q 2200A 40 D 62: DC 2Q 2200A 40 D 63: DC 4Q 2700A 40 D 64: DC 2Q 2700A 40 D 65: DC 4Q 1200A 60 D 66: DC 2Q 1200A 60 D	81: DC RETRO 4Q 128A 82: DC RETRO 2Q 128A 83: DC 2Q 40A 84: DC 4Q 40A 85: DC 4Q 750A 86: DC 2Q 750A
6: DC 2Q 40A 7: DC 4Q 60A 8: DC 2Q 60A 9: DC 4Q 80A 10: DC 2Q 80A 11: DC 4Q 90A 12: DC 2Q 90A 13: DC 4Q 120A 14: DC 2Q 120A 15: DC 4Q 125A	27: DC 4Q 160A D 28: DC 2Q 160A D 29: DC 4Q 200A D 30: DC 2Q 200A D 31: DC 4Q 280A D 32: DC 2Q 280A D 33: DC 4Q 128* 20* D 34: DC 2Q 128* 20* D 35: DC 4Q 1024* 20*D 36: DC 2Q 1024* 20*D	47: DC 4Q 1024* 30*D 48: DC 2Q 1024* 30*D 49: DC 4Q 1200A 20 D 50: DC 2Q 1200A 20 D 51: DC 4Q 1700A 20 D 52: DC 2Q 1700A 20 D 53: DC 4Q 2200A 20 D 54: DC 2Q 2200A 20 D 55: DC 4Q 2700A 20 D 56: DC 2Q 2700A 20 D	67: DC 4Q 1700A 60 D 68: DC 2Q 1700A 60 D 69: DC 4Q 2200A 60 D 70: DC 2Q 2200A 60 D 71: DC 4Q 2700A 60 D 72: DC 2Q 2700A 60 D 73: DC 4Q 1200A 80 D 74: DC 2Q 1200A 80 D 75: DC 4Q 1700A 80 D 76: DC 2Q 1700A 80 D	87: DC 4Q 850A 88: DC 2Q 850A 89: DC 4Q 1580A 90: DC 2Q 1580A 91: DC 4Q 400A 92: DC 2Q 400A 93: DC 4Q 550A 94: DC 2Q 550A 95: DC 4Q 750A 40D 96: DC 2Q 750A 40D
16: DC 2Q 125A 17: DC 4Q 162A 18: DC 2Q 162A 19: DC 4Q 160A 20: DC 2Q 160A	37: DC 4Q 1024* 30*D 38: DC 2Q 1024* 30*D 39: DC 4Q 360A D 40: DC 2Q 360A D	57: DC 4Q 1200A 40 D 58: DC 2Q 1200A 40 D 59: DC 4Q 1700A 40 D 60: DC 2Q 1700A 40 D	77: DC 4Q 2200A 80 D 78: DC 2Q 2200A 80 D 79: DC 4Q 2700A 80 D 80: DC 2Q 2700A 80 D	

C-58 Programming

DRIVE INFO				
Parameter	Tag		Range	
PRODUCT CODE	510		0 to 96	
An internal representation	of the product code. This rep	resentation may change between	en software versions.	
0: INVALID	21: DC 4Q 35A D	41: DC 4Q 450A D	61: DC 4Q 2200A 40 D	81: DC RETRO 4Q 128A
1: DC 4Q 20A	22: DC 2Q 35A D	42: DC 2Q 450A D	62: DC 2Q 2200A 40 D	82: DC RETRO 2Q 128A
2: DC 2Q 20A	23: DC 4Q 80A D	43: DC 4Q 750A D	63: DC 4Q 2700A 40 D	83: DC 2Q 40A
3: DC 4Q 35A	24: DC 2Q 80A D	44: DC 2Q 750A D	64: DC 2Q 2700A 40 D	84: DC 4Q 40A
4: DC 2Q 35A	25: DC 4Q 120A D	45: DC 4Q 850A D	65: DC 4Q 1200A 60 D	85: DC 4Q 750A
5: DC 4Q 40A	26: DC 2Q 120A D	46: DC 2Q 850A D	66: DC 2Q 1200A 60 D	86: DC 2Q 750A
6: DC 2Q 40A	27: DC 4Q 160A D	47: DC 4Q 1024* 30*D	67: DC 4Q 1700A 60 D	87: DC 4Q 850A
7: DC 4Q 60A	28: DC 2Q 160A D	48: DC 2Q 1024* 30*D	68: DC 2Q 1700A 60 D	88: DC 2Q 850A
8: DC 2Q 60A	29: DC 4Q 200A D	49: DC 4Q 1200A 20 D	69: DC 4Q 2200A 60 D	89: DC 4Q 1580A
9: DC 4Q 80A	30: DC 2Q 200A D	50: DC 2Q 1200A 20 D	70: DC 2Q 2200A 60 D	90: DC 2Q 1580A
10: DC 2Q 80A	31: DC 4Q 280A D	51: DC 4Q 1700A 20 D	71: DC 4Q 2700A 60 D	91: DC 4Q 400A
11: DC 4Q 90A	32: DC 2Q 280A D	52: DC 2Q 1700A 20 D	72: DC 2Q 2700A 60 D	92: DC 2Q 400A
12: DC 2Q 90A	33: DC 4Q 128* 20* D	53: DC 4Q 2200A 20 D	73: DC 4Q 1200A 80 D	93: DC 4Q 550A
13: DC 4Q 120A	34: DC 2Q 128* 20* D	54: DC 2Q 2200A 20 D	74: DC 2Q 1200A 80 D	94: DC 2Q 550A
14: DC 2Q 120A	35: DC 4Q 1024* 20*D	55: DC 4Q 2700A 20 D	75: DC 4Q 1700A 80 D	95: DC 4Q 750A 40D
15: DC 4Q 125A	36: DC 2Q 1024* 20*D	56: DC 2Q 2700A 20 D	76: DC 2Q 1700A 80 D	96: DC 2Q 750A 40D
16: DC 2Q 125A	37: DC 4Q 1024* 30*D	57: DC 4Q 1200A 40 D	77: DC 4Q 2200A 80 D	
17: DC 4Q 162A	38: DC 2Q 1024* 30*D	58: DC 2Q 1200A 40 D	78: DC 2Q 2200A 80 D	
18: DC 2Q 162A	39: DC 4Q 360A D	59: DC 4Q 1700A 40 D	79: DC 4Q 2700A 80 D	
19: DC 4Q 160A	40: DC 2Q 360A D	60: DC 2Q 1700A 40 D	80: DC 2Q 2700A 80 D	
20: DC 2Q 160A				
FRAME ID	626			
An internal representation	of the frame size.			
VERSION NUMBER	155		0x0801	
The drive's version number	r as seen via communications	s. Version 8.01 is represented a	as 0x0801.	
	emonic = V0. The version nu	1		


MMI Menu Map (from ENCODER 1)


CONFIGURE DRIVE

_ENCODER LINES _ENCODER RPM ENCODER SIGN

ENCODER

This block allows the Speed Feedback to be measured using a quadrature encoder when a Speed Feedback Option is fitted - refer to Chapter 3: Speed Feedback and Technology Options.

MMI Menu Map (from ENCODER 1)

DIAGNOSTICS

_ENCODER UNFIL. ENCODER The ENCODER 1 function block is associated with the speed feedback option.

The ENCODER 2 function block is associated with Digital Input 2 (terminal C7) and Digital Input 3 (terminal C8) where:

- Digital Input 2 provides the clock.
- Digital Input 3 is used as a direction input.

MMI Menu Map

1 FUNCTION BLOCKS

MOTOR CONTROL

ENCODER

4 ENCODER 1

4 ENCODER 2

SPEED FEEDBACK
ENCODER TYPE

ENCODER

ENCODER LINES	24, 1230	10 to 5000
Parameter	Tag	Range
LINCODLIN		

The number of lines must be set to match the type of encoder being used. Incorrect setting of this parameter will result in an erroneous speed measurement. Proprietary encoders of specifications can be normalised by setting this parameter as appropriate.

ENCODER SIGN 49, 1231 NEGATIVE / POSITIVE

Since the encoder feedback cannot be reversed electrically, the signal polarity can be reversed by the control software.

It is necessary to set up this parameter when in CLOSED-LOOP VEC mode, as the encoder direction must be correct for this mode to operate.

ENCODER RPM	22, 1232	0 to 6000
Motor top speed setting (100%) wh	en using encoderfeedback.	
UNFIL. ENCODER	59, 1235	—. RPM
Unfiltered encoder speed in RPM		
ENCODER	206, 1236	−.RPM
Encoder speed in RPM		
SPEED FEEDBACK	1227, 1237	x %
Encoder speed in %. A speed of 100	0% indicates that the encoder is rotating at the va	alue set in the ENCODER RPM parameter.

C-60 Programming

ENCODER

ENCODER TYPE	1267, 1268	See below
Parameter	Tag	Range
LITCODEIX		

Selects the operating mode of the encoder input. Both of these encoder function blocks can be used in either QUADRATURE or CLOCK/DIRECTION modes of operation. When in CLOCK/DIRECTION mode, the CLOCK input is applied to terminal A on the speed feedback option (for ENCODER 1) or to Digital Input 2 (for ENCODER 2), and every rising edge of the CLOCK is counted.

0 : CLOCK/DIRECTION 1 : QUADRATURE

Functional Description

You must configure Digital Input 2 and 3 which, by default, provide "Ramp Hold" and "Current Demand Isolate" functionality. In the default configuration they are linked using LINK 21 and LINK 22 respectively. The Encoder blocks are connected to terminals C7 and C8 internally and thus don't require these links. Use the Configurator Tool to delete the links.

Alternatively when the default configuration is loaded, this can be done using the Keypad as shown below:

Navigate to the SYSTEM::CONFIGURE I/O menu. Select the CONFIGURE ENABLE parameter and set to ENABLED. All LEDS on the Keypad will flash. Press the key. Use the key to navigate to the DIGITAL INPUTS menu.

In this menu, select the DIGIN 2 (C7) menu. Navigate to the DESTINATION TAG parameter and set this value to 0 (zero). Repeat this operation for the DIGIN 3 (C8) parameter.

Remember to perform a Parameter Save.

ENCODER TYPE = CLOCK/DIRECTION

This (pulse-counting mode) Encoder Type can be set in the ENCODER 2 function block only.

Digital Input 2 (terminal C7) is used to provide the clock - the pulses are applied on C7

Digital Input 3 (terminal C8) is used as a direction input:

- When C8 is high, (24V), the count is incremented
- When C8 is low, (0V), the count is decremented

Each full pulse received increments the encoder count.

A full pulse is the pulse input going from low to high, and then back to low.

Speed is calculated using the following function:

ENCODER TYPE = QUADRATURE

A quadrature encoder uses 2 input signals (A and B), phase shifted by a quarter of a cycle (90°).

Direction is obtained by looking at the combined state of A and B.

Each edge received from the encoder increments the encoder count. There are 4 counts per line. Speed is calculated using the following function:

SPEED HZ = filter
$$\begin{bmatrix} \frac{\text{CountsPerSecond}}{\text{Lines x 4}} \end{bmatrix}$$
, FilterTime

C-62 Programming

MMI Menu Map

1 DIAGNOSTICS

SPEED FEEDBACK
CURRENT FEEDBACK
UNFIL.FIELD FBK
ARM VOLTS FBK
TACH INPUT

FEEDBACKS

Diagnostics for the motor feedbacks.

FUNCTION BLOCKS\MOTOR CONTROL\FEEDBACKS

ARM VOLTS FBK	[605]	- 0 V
UNFIL.FIELD FBK	[181]	- 0.00 %
SPEED FEEDBACK	[207]	- 0.00 %
CURRENT FEEDBACK	[298]	- 0.00 %
TACH INPUT	[308]	- 0.0 %

FEEDBACKS		
Parameter	Tag	Range
ARM VOLTS FBK	605	x V
Back EMF scaled by NOM MOTOR VOLT	S.	
UNFIL.FIELD FBK	181	xx %
Scaled field current feedback		
SPEED FEEDBACK	207	xx %
Speed feedback.		
CURRENT FEEDBACK	298	xx %
Scaled and filtered armature current feedbac	k.	
TACH INPUT	308	x %
Scaled analog tachogenerator feedback.		

MMI Menu Map

1 SETUP PARAMETERS

2 FIELD CONTROL

FIELD ENABLE FLD.CTRL MODE FIELD I THRESH UP TO FIELD

>> FLD.VOLTAGE VARS

FLD.QUENCH DELAY
FLD.QUENCH MODE

FIELD CONTROL

This function block contains all the parameters for the field operating mode.

It controls the drive's full wave, single phase, motor field thyristor bridge circuit.

The FIELD CONTROL function block is viewed in three sub-menus on the MMI: FLD VOLTAGE VARS, FLD CURRENT VARS and FLD WEAK VARS.

In the FIELD CONTROL menu, you select the field operating mode: open loop voltage control or closed loop current control.

The inputs to the FIELD CONTROL block come from FLD VOLTAGE VARS and FLD CURRENT VARS.

FIELD ENABLE controls the field thyristor bridge and is set to DISABLED in permanent field motor applications. Disabling the field automatically overrides the field fail alarm. If FIELD ENABLE is enabled, you can select between voltage and current control using the FLD CTRL MODE parameter. The default is VOLTAGE CONTROL.

The diagnostic DRIVE ENABLE (Tag 84) is also used by the FLD. QUENCH DELAY to delay disabling the field when Run is removed.

MMI Menu Map

1 SETUP PARAMETERS

2 FIELD CONTROL

FLD.VOLTAGE VARS

FLD VOLTAGE VARS: MMI Sub-Menu

Contains the parameter for the open loop VOLTAGE CONTROL mode.

In VOLTAGE CONTROL mode, set the value of FLD.VOLTS RATIO to provide the correct field voltage. This control mode provides open-loop phase angle control of the thyristor bridge. To calculate FLD.VOLTS RATIO, divide the desired DC field voltage by the line-to-line RMS AC input voltage and multiply by 100.Note that supply voltage variations are not compensated for in the field supply when in this mode of operation.

FUNCTION BLOCKS\MOTOR CONTROL\FIELD CONTROL

[169] - DISABLED FIELD ENABLED [183] - 0.00 % FIELD DEMAND FLD.FIRING ANGLE [184] - 0.00 DEG FIELD I FBK [300] - 0.00 % FIELD I FBK.AMPS [539] - 0.0 A UP TO FIELD [618] - FALSE WEAK PID ERROR [1185] - 0.00 % WEAK PID OUT [1186] - 0.00 % FIELD STATE [1187] - FIELD INIT BEMF INPUT [1274] - 0.00 % ENABLED - [170] FIELD ENABLE 100.00 % - [171] SETPOINT 0.10 - [173] PROP, GAIN 1.28 - [172] INT, GAIN DISABLED - [174] FLD. WEAK ENABLE 2.00 - [175] **EMF LEAD** 40.00 - [176] EMF LAG 0.30 - [177] EMF GAIN 90.00 % - [179] MIN FLD.CURRENT 100.00 % - [178] MAX VOLTS 100 - [191] BEMF FBK LEAD 100 - [192] BEMF FBK LAG 0.0 s - [185] FLD.QUENCH DELAY QUENCH - [186] FLD.QUENCH MODE 80.00 % - [617] FIELD I THRESH VOLTAGE CONTROL - [209] FLD. CTRL MODE 90.0% - [210] FLD. VOLTS RATIO LOCAL BEMF - [1273] BEMF SOURCE

MMI Menu Map

SETUP PARAMETERS

2 FIELD CONTROL

3 FLD.CURRENT VARS

SETPOINT
PROP. GAIN
INT. GAIN

>> FLD.WEAK VARS

FLD CURRENT VARS: MMI Sub-Menu

Contains the parameters for the closed loop current control mode.

CURRENT CONTROL mode uses actual field current feedback for closed-loop control giving accurate motor field control independent of motor temperature. This mode makes use of a simple PI controller and is a pre-requisite for field weakening.

C-64 Programming

MMI Menu Map

1 SETUP PARAMETERS

2 FIELD CONTROL

3 FLD.CURRENT VARS

4 FLD.WEAK VARS

FLD. WEAK ENABLE

EMF LEAD

EMF GAIN

MIN FLD.CURRENT

MAX VOLTS

BEMF FBK LEAD

BEMF FBK LAG

MMI Menu Map

DIAGNOSTICS

FIELD ENABLED

FIELD DEMAND

FIELD I FBK

FIELD I FBK.AMPS

FLD.FIRING ANGLE

MMI Menu Map

1 FUNCTION BLOCKS

2 MOTOR CONTROL

3 FIELD CONTROL

WEAK PID ERROR WEAK PID OUT FIELD STATE

BEMF SOURCE

BEMF INPUT

FLD WEAK VARS: MMI Sub-Menu

In certain applications of a DC motor controller, high speeds can only be achieved by reducing the field current and therefore the resultant torque. This is termed as the Constant-Horsepower region or Field-Weakening region, and the speed at which it begins is known as the Base Speed.

FIELD CONTROL

Parameter	Tag	Range
FIELD ENABLE	170	DISABLED / ENABLED
Enables and disables the drive i	motor Field Control.	
SETPOINT	171	0.00 to 100.00 %
Field current setpoint as percen	tage of calibrated value.	
PROP. GAIN	173	0.00 to 100.00
This is the proportional gain ad	justment of the field current PI loop. The defa	ault of 0.10 is equivalent to a real gain of 10.
INT. GAIN	172	0.00 to 100.00
This is the integral gain adjustn	nent of the field current PI loop.	

FLD. WEAK ENABLE 174

Activates the additional motor back-emf, gain-limited PI loop for field weakening (field spillover) control.

STANDARD mode uses the control loop to convert the back-emf in excess of the MAX VOLTS setting, into a reduction of the demanded field current.

ADVANCED mode also adds in a feedforward control term, based on a comparison of the speed feedback to the calculated basespeed, and uses adaptive gain, in both the back-emf and speed control loops, to compensate for the gain effects of reduced field operation.

EMF LEAD 175 0.10 to 50.00

With field weakening control enabled, a gain-limited PI loop is brought into operation. This is the lead time constant adjustment of the field weakening PI loop. With a default of 2.00, real time constant = 200ms.

Refer to Chapter 5: "Control Loops" for details of Tuning.

EMF LAG 176 0.00 to 200.00

This is the lag time constant adjustment of the field weakening PIloop

With a default of 40.00, real time constant = 4000ms.

Refer to Chapter 5: "Control Loops" for details of Tuning.

EMF GAIN 177 0.00 to 100.00

This is the steady-state gain adjustment of the field weakening PIloop.

With a default of 0.30, real gain = 30.

Refer to Chapter 5: "Control Loops" for details of Tuning.

DISABLED/STANDARD/ADVANCED

FIELD CONTROL

Parameter	Tag	Range
MIN FLD. CURRENT	179	0.00 to 100.00 %

Protects against motor overspeeding due to unintended excessive field weakening.

The field weakening loop reduces the field current to achieve speed control above base speed. At top speed the field reaches a minimum value. MIN FIELD CURRENT should be set below this minimum value to allow reasonable margin for transient control near the top speed but not lower than 6% as this could then cause the "Field Fail" alarm to operate.

MAX VOLTS 178 0.00 to 100.00 %

Maximum volts is the back-emf voltage level at which field weakening begins. It is also known as "Spillover Bias". The default value is 100% of the nominal value as set by the armature voltage calibration value. This value might be reduced due to the known IR drop included in the armature voltage calibration value. Additionally for commissioning purposes, this value may be set to another (lower) desirable level, and subsequently returned to the original value.

BEMF FBK LEAD 191 20 to 5000

This is the lead time constant of the back emf feedback filter which is used for reducing armature voltage overshoots when accelerating fast through base speed with a default of 100 (ms).

Refer to Chapter 5: "Control Loops" for details of Tuning.

BEMF FBK LAG 192 20 to 5000

This is the lag time constant of the above feedback filter. If the filter is active, the ratio of lead / lag should always be greater than 1 to give an overall lead action which reduces the voltage overshoot and less than, typically, 3 for stable control. The default values cancel each other and make the filter inactive with a default of 100 (ms).

Refer to Chapter 5: "Control Loops" for details of Tuning.

FLD. QUENCH DELAY 185 0.0 to 600.0 s

If dynamic breaking is used the field must be maintained for a period after the drive is disabled until the motor reaches zero speed. The field quench delay is the period of time that the field is maintained for when the drive is disabled.

FLD. QUENCH MODE 186 QUENCH / STANDBY

After the field quench delay has expired, the field can be entirely quenched or put into a standby mode at 50% of rated current or volts depending whether in current or voltage control mode respectively. (The default standby value of 50% can be modified through the "SYSTEM / Reserved" Menu which is primarily for factory use only and requires the "super" password.)

FIELD I THRESH 617 0.00 to 100.00 %

Threshold for UP TO FIELD diagnostic as a percentage of calibrated field current (see below).

FLD. CTRL MODE 209 See below

Selects between open-loop VOLTAGE CONTROL or closed-loop CURRENT CONTROL.

FLD. VOLTS RATIO 210 0.0 to 100.0 %

Sets the output dc field voltage as a percentage of the RMS FIELD supply voltage (line-to-line) when FLD CTRL MODE is set to VOLTAGE CONTROL.

FIELD ENABLED 169 DISABLED / ENABLED

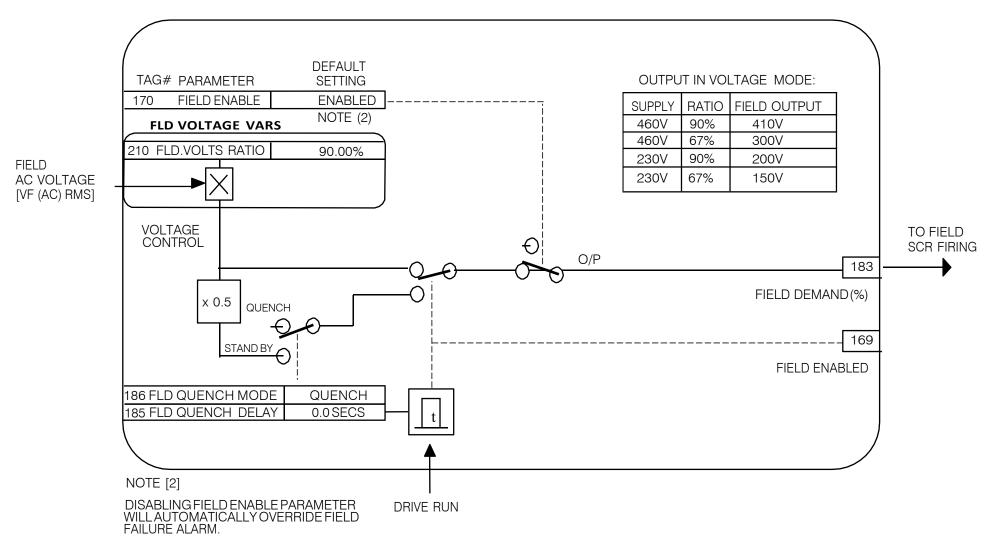
Refer to Chapter 6: "The Keypad" - The Keypad Menus (DIAGNOSTICS).

C-66 Programming

FIELD CONTROL		
Parameter	Tag	Range
FIELD DEMAND	183	−.xx %
Refer to Chapter 6: "The Keypad" - T	he Keypad Menus(DIAGNOS	STICS).
FLD. FIRING ANGLE	184	−.xx DEG
Refer to Chapter 6: "The Keypad" - T	he Keypad Menus(DIAGNOS	STICS).
FIELD I FBK.	300	−.xx %
Field current feedback, as a percentage	e of the calibrated level.	
FIELD I FBK.AMPS	539	– .x A
FIELD I FBK calibrated in Amps.		
UP TO FIELD	618	FALSE / TRUE
Field current feedback is above FIELI	O I THRESHOLD when TRU	JE. This may be used as part of a mechanical brake release strategy.
WEAK PID ERROR	1185	−.xx %
Input error, as a percentage of calibrat MAX VOLTS setting.	ed Volts, to the field weakeni	ing controller. This is formed from the spill-over of filtered BEMF above the
WEAK PID OUT	1186	−.xx %
Output field reduction demand, as a p	ercentage of calibrated field	current, from the field weakening controller.
FIELD STATE	1187	See below
State of the field controller.		
0 : FIELD INIT		
1 : FIELD QUENC		
2 : FIELD STANDI		
3 : FIELD FULL FI		OUTDIGHT DELAY (*
4 : FIELD TIMER	indicates that the FLD	O.QUENCH DELAY timer is counting down
5 : FIELD ERROR		
6 : LOCAL BEMF	4070	LOCAL DEME / DEME INDUIT
BEMF SOURCE	1273	LOCAL BEMF / BEMF INPUT
Selects the source of the back-emf fee Setting LOCAL BEMF makes use of		
9		
Setting BEIMF INPUT uses the value	in the parameter BEMF INPU	JT as the feedback for the field weakening control.

FIELD CONTROL

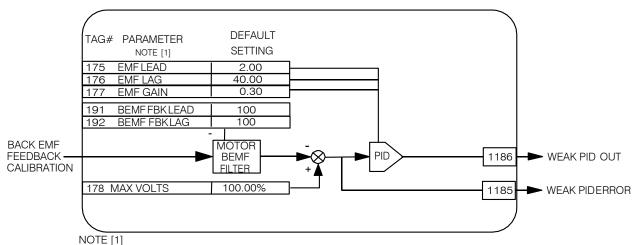
Parameter	Tag	Range
BEMF INPUT	1274	xx %

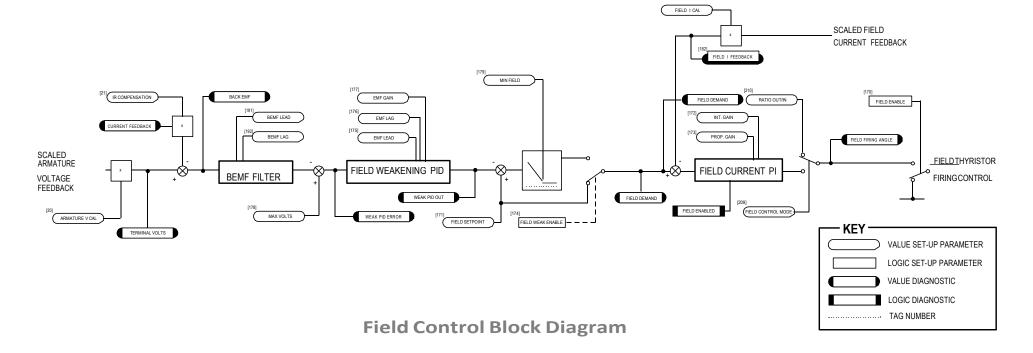

The feedback value of back-emf used for the field weakening control, when BEMF SOURCE is set to BEMF INPUT. It allows for the use of the field weakening control structure on motors not directly connected to the armature terminals. It can be wired within the block diagram to an analogue input or a communications path.

The use of this parameter is typically combined with parameters ISOL DMD SOURCE and 3-PHASE FIELD (CURRENT LOOP function block) to apply the drive to field weakening control of a motor field.

Note: If the ADVANCED field weakening mode is being used with an external back-emf feedback, ensure to apply the speed feedback so that the base speed calculator can function correctly.

Functional Description


FIELD CONTROL MODE: VOLTAGE


FIELD CONTROL MODE: CURRENT DEFAULT SETTING TAG# PARAMETER ENABLED 170 FIELD ENABLE 173 PROP. GAIN 0.10 172 INT. GAIN 1.28 DISABLED 174 FLD WEAK ENABLE 179 MIN FLD CURRENT 100.00 % FIELD CURRENT **FEEDBACK** FLD FIRING \bigcirc **ANGLE** WEAK PID OUT O/P 184 183 Ы FIELD DEMAND QUENCH 50% 169 STANDBY FIELD ENABLED SETPOINT 171 100.00% 186 FLD QUENCH MODE QUENCH 0.0 SECS 186 FLD QUENCH DELAY **DRIVE RUN**

C-70 Programming

FLD WEAKVARS

FIELD WEAKENING OPERATION REQUIRES ENCODER OR ANALOG TACH FEEDBACK

MMI Menu Map

1 SETUP PARAMETERS

2 SPEED LOOP

3 ADVANCED

4 INERTIA COMP

INERTIA

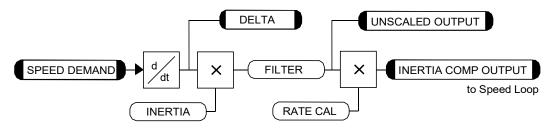
FILTER RATE CAL

DELTA

UNSCALED OUTPUT

INERTIA COMP O/P

INERTIA COMP


This function block directly compensates for load inertia during acceleration.

This is particularly useful in high accuracy applications such as positioning systems and elevators. The block calculates its output at the same rate as the current loop for maximum performance.

FUNCTION BLOCKS/MOTOR CONTROL/INERTIA COMP INERTIA COMP O/P [602] - 0.00 % UNSCALED OUTPUT [603] - 0.00 % DELTA [601] - 0.00 % 0.00 - [556] INERTIA 0 - [557] FILTER 100.00 - [558] RATE CAL

INERTIA COMP		
Parameter	Tag	Range
INERTIA	556	0.00 to 200.00
The value of current necessary to accele	erate load to 100% speed in 1 second.	
FILTER	557	0 to 20000
Low pass filter acting on the DELTA pa	arameter.	
RATE CAL	558	0.00 to 200.00
Inertia compensation scaling factor.		
INERTIA COMP O/P	602	xx %
Inertia compensation directly added to t	the speed loop output.	
UNSCALED OUTPUT	603	xx %
Unscaled inertia compensation.		
DELTA	601	xx %
Rate of change of speed demand in %/s	2.	

Functional Description

C-72 Programming

MMI Menu Map I FUNCTION BLOCKS 2 MISCELLANEOUS 3 LINK 4 LINK 1 4 LINK 80 SOURCE TAG DESTINATION TAG LINK 1 - 80

LINK

Use internal links to connect between function block parameters.

FUNCTION BLOCKS\MISCELLANEOUS\LINK\LINK1

0 - [364] SOURCE TAG 0 - [365] DESTINATION TAG

FUNCTION BLOCKS\MISCELLANEOUS\LINK\LINK80

0 - [778] SOURCE TAG

0 - [779] DESTINATION TAG

Parameter Tag Range

SOURCE TAG Refer to Parameter Table -1276 to 1276

Enter the tag number of the source input value. Refer to "Making and Breaking Function Block Connections", page D-2.

DESTINATION TAG Refer to Parameter Table 0 to 1276

Enter the tag number for the destination output value. Refer to "Making and Breaking Function Block Connections", page D-2.

INVERSETIME

FUNCTION BLOCKS/MOTOR CONTROL/INVERSE TIME

INVERSE TIME [203] - 0.00 %

The purpose of the inverse time is to automatically reduce the current limit in response to prolonged overload conditions.

As the motor current exceeds an internal threshold of 103%, the excess current is integrated. The inverse time output remains unchanged until the integrated value is equivalent to an overload of 200% current for 60s. Once this limit is reached the integral value is clamped, and the inverse time output is decreased towards 103% at 10% per second.

Should the current drop below the 103% threshold the integrator value starts to discharge. As soon as the integrated value is less than the maximum overload level the inverse time output is allowed to ramp back up to 200% at a rate of 10% per second.

The inverse time output parameter is internally used by the current loop.

INVERSE TIME		
Parameter	Tag	Range
INVERSE TIME	203	xx %
Inverse time clamp output level.		

C-74 Programming

MMI Menu Map SETUP PARAMETERS 2 JOG/SLACK JOG SPEED 1 JOG SPEED 2 TAKE UP 1 TAKE UP 2 CRAWL SPEED MODE

MMI Menu Map

UNCTION BLOCKS

RAMP RATE

SEQ & REF

3 JOG/SLACK

JOG/SLACK OUTPUT

JOG/SLACK

This block can be used to provide jog, take up slack and crawl speed functions.

The inputs to this block are the Start and Jog signals via the SEQUENCING function block, and the speed demand from the RAMPS function block. The output of this block is connected to the RAMPS function block.

The JOG/SLACK parameters modify or replace the ramp input speed demand. You should use a spare digital input to switch between modes to achieve full functionality.

output is the modified value of the speed demand as required by MODE, Start, and Jog. These settings are shown in the Setpoint Selection table.

-5.00 % - [219] JOG SPEED 2 5.00 % - [253] TAKE UP 1 -5.00 % [254] TAKE UP 2 10.00 % - [225] CRAWL SPEED FALSE - [228] MODE 1.0 s - [355] RAMP RATE The JOG/SLACK OUTPUT parameter is internally connected to the RAMPS function block. This

- Jog: With the Start signal OFF, the jog speed demand replaces the ramp input speed demand. MODE selects between jog setpoints 1 and 2. The jog RAMP RATE replaces the RAMP ACCEL TIME and RAMP DECEL TIME in the RAMPS function block. % S-RAMP is also set to 0.00%.
- Take Up Slack: With the Start signal ON, the jog signal performs a "take up slack" function. When a jog signal is received, the take up slack setpoint is added to the ramp input speed demand. MODE and Jog settings, from the table, select between the two take-up slack setpoints.
- Crawl: CRAWL SPEED replaces the ramp input speed demand as the output signal when both Start and Jog signals are ON, and MODE is TRUE.

JOG/SLACK

Parameter	Tag	Range
JOG SPEED 1	218	-100.00 to 100.00 %
Jog speed setpoint 1.		
JOG SPEED 2	219	-100.00 to 100.00 %
Jog speed setpoint 2.		
TAKE UP 1	253	-100.00 to 100.00 %
Take-up slack speed setpoint 1.		
TAKE UP 2	254	-100.00 to 100.00 %
Take-up slack speed setpoint 2.		
CRAWL SPEED	225	-100.00 to 100.00 %
Crawl speed setpoint.		
MODE	228	FALSE / TRUE
Selects jog speed setpoints, take up setpo	oints, and the crawl setpoint. To achieve	full functionality, connect MODE to a spare digital input.

FUNCTION BLOCKS\SEQ & REF\JOG/SLACK

[218] JOG SPEED 1

5.00 %

OPERATING MODE [212] - STOP

JOG/SLACK OUTPUT [698] - 0.00 %

JOG	/SL	ACK
-----	-----	-----

Parameter	Tag	Range
RAMP RATE	355	0.1 to 600.0 s

The ramp rate used while jogging. This is independent of the main ramp rate during normal running. The acceleration and deceleration times in jog are always equal.

OPERATING MODE 212 See below

Refer to Chapter 6: "The Keypad" - The Keypad Menus (DIAGNOSTICS).

0: STOP

1:STOP

2: JOG SP. 1

3 : JOG SP. 2

4: RUN

5: TAKE UP SP. 1

6: TAKE UP SP. 2

7: CRAWL

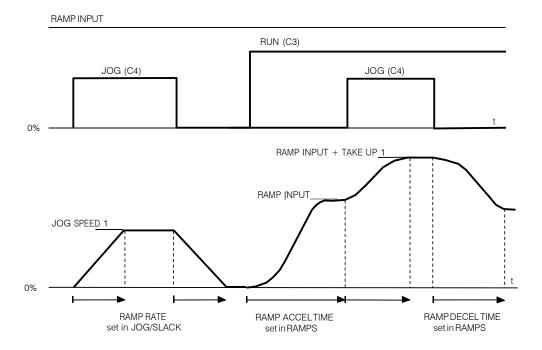
JOG/SLACK OUTPUT

698

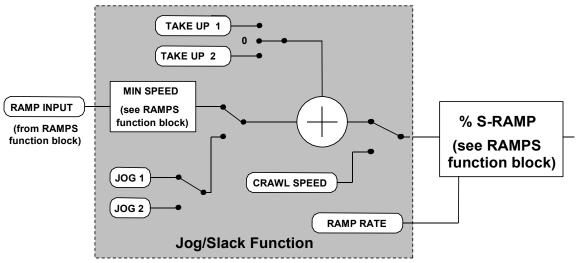
.00 %

The setpoint combined with the JOG / SLACK function.

Functional Description


NOTE

The setpoint column in the table below refers to the Ramp Input ONLY, as indicated in the table. Any "direct" setpoints present will also add to this setpoint to make the total speed setpoint. If you don't want this to happen, for example during jogging, then disconnect the direct setpoint(s) during the appropriate conditions.


Setpoint Selection Table

OPERATING MODE [2 ⁻	12] - diagnostic	Start C3	Jog C4	MODE [228]	Ramp Input	Ramp Time	Contactor
0 : STOP		OFF	OFF	False	Setpoint	Default	OFF
1:STOP		OFF	OFF	True	Setpoint	Default	OFF
2 : JOG SP. 1	(inch/jog 1)	OFF	ON	False	JOG SPEED 1	RAMP RATE	ON
3 : JOG SP. 2	(inch/jog 2)	OFF	ON	True	JOG SPEED2	RAMP RATE	ON
4 : RUN		ON	OFF	False	Setpoint	Default	ON
5 : TAKE UP SP. 1	(take-up slack 1)	ON *	ON *	False	Setpoint + TAKE UP1	Default	ON
6: TAKE UP SP. 2	(take-up slack 2)	ON	OFF	True	Setpoint + TAKE UP2	Default	ON
7 : CRAWL		ON *	ON *	True	CRAWL SPEED	Default	ON

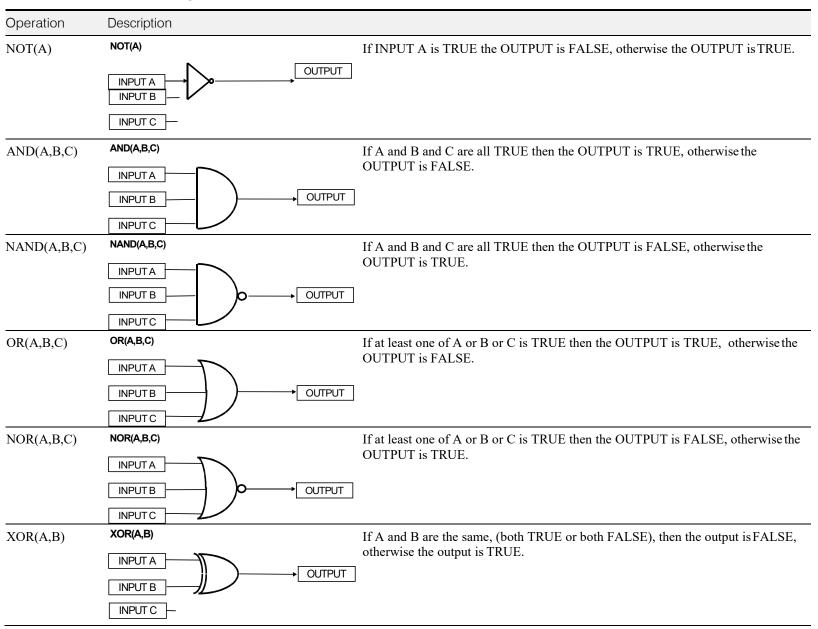
^{*} Start (C3) and Jog (C4) must be applied (ON) simultaneously in the cases of TAKE UP SP.1 and CRAWL.

Block Diagram

MMI Menu Map 1 FUNCTION BLOCKS 2 MISCELLANEOUS 3 LOGIC FUNC 4 LOGIC FUNC 1 4 LOGIC FUNC 2 4 LOGIC FUNC 3 4 LOGIC FUNC 4 4 LOGIC FUNC 5 4 LOGIC FUNC 6 4 LOGIC FUNC 7 4 LOGIC FUNC 8 4 LOGIC FUNC 9 4 LOGIC FUNC 10 INPUT A INPUT B INPUT C TYPE

OUTPUT

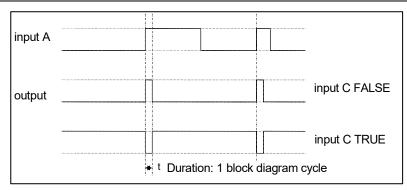
LOGIC FUNC


These generic function blocks can be configured to perform one of a number of simple functions upon a fixed number of inputs.

FUNCTION BLOCKS\MIS	CELLANEOUS\LOG	IC FUNC\LOGIC FUNC 1	FUNCTION BLOCKS\MISC	ELLANEOUS\LOG	IC FUNC\LOGIC FUNC 2
	OUTPUT	[784] - FALSE		OUTPUT	[789] - FALSE
FALSE - [780] INPUT A	_	FALSE - [785]	INPUT A	-
FALSE - [781] INPUT B	-	FALSE - [786]	INPUT B	L-
FALSE - [782		-	FALSE - [787]	INPUT C	-
NOT(A) - [783] TYPE		NOT(A) - [788]	TYPE	
FUNCTION BLOCKS\MIS	CELLANEOUS\LOG	IC FUNC\LOGIC FUNC 3	FUNCTION BLOCKS\MISC	ELLANEOUS\LOGI	C FUNC\LOGIC FUNC 4
0	OUTPUT	[794] - FALSE		OUTPUT	[799] - FALSE
FALSE - [790] INPUT A	-	FALSE - [795]	INPUT A	-
FALSE - [791] INPUT B	-	FALSE - [796]	INPUT B	-
FALSE - [792	INPUT C	-	FALSE - [797]	INPUT C	- -
NOT(A) - [793] TYPE		NOT(A) - [798]	TYPE	
FUNCTION BLOCKS\MIS	CELLANEOUS\LOG	IC FUNC\LOGIC FUNC 5	FUNCTION BLOCKS\MISC	ELLANEOUS\LOG	IC FUNC\LOGIC FUNC 6
	OUTPUT	[804] - FALSE		OUTPUT	[809] - FALSE
FALSE - [800] INPUT A	_	FALSE - [805]	INPUT A	-
FALSE - [801		_	FALSE - [806]	INPUT B	-
FALSE - [802] INPUT C	-	FALSE - [807]	INPUT C	-
NOT(A) - [803	TYPE		NOT(A) - [808]	TYPE	-
FUNCTION BLOCKS\MIS	CELLANEOUS\LOG	IC FUNC\LOGIC FUNC 7	FUNCTION BLOCKS\MISC	ELLANEOUS\LOG	IC FUNC\LOGIC FUNC 8
	OUTPUT	[814] - FALSE		OUTPUT	[819] - FALSE
FALSE - [810] INPUT A		FALSE - [815]	INPUT A	-0
FALSE - [811] INPUT B	_	FALSE - [816]		- 2
FALSE - [812	INPUT C	_	FALSE - [817]	INPUT C	-11
NOT(A) - [813] TYPE		NOT(A) - [818]		
FUNCTION BLOCKS\MIS	CELLANEOUS\LOG	C FUNC\LOGIC FUNC 9	FUNCTION BLOCKS\MISCE	LLANEOUS\LOGIC	FUNC\LOGIC FUNC 10
	OUTPUT	[824] - FALSE		OUTPUT	[829] - FALSE
FALSE - [820]			FALSE - [825]		
FALSE - [821]			FALSE - [826]		-
FALSE - [822]		L	FALSE - [827]		-
NOT(A) - [823]		_	NOT(A) - [828]	TYPE	<u></u> 8
1 1020					

C-78 Programming

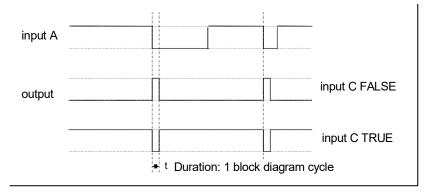
LOGIC FUNC		
Parameter	Tag	Range
INPUT A	780, 785, 790, 795, 800, 805, 810, 815,820, 825	FALSE / TRUE
General purpose logic input.		
INPUT B	781, 786, 791, 796, 801, 806, 811, 816,821, 826	FALSE / TRUE
General purpose logic input.		
INPUT C	782, 787, 792, 797, 802, 807, 812, 817, 822, 827	FALSE / TRUE
General purpose logic input.		
TYPE	783, 788, 793, 798, 803, 808, 813, 818, 823, 828	See below
The operation to be performed on the three in	uputs to produce the output value. The operations that can	be selected are:
0: NOT(A)		
1: AND(A,B,C)		
2: NAND(A,B,C)		
3: OR(A,B,C)		
4: NOR(A,B,C)		
5: XOR(A,B)		
6: 0-1 EDGE(A)		
7: 1-0 EDGE(A)		
8: AND(A,B,!C)		
9: OR(A,B,!C)		
10: S FLIP-FLOP		
11: R FLIP-FLOP		
12: LATCH		
13: SWITCH		
14: (A AND B) OR C		
15: (A OR B) AND C		
OUTPUT	784, 789, 794, 799, 804, 809, 814, 819, 824, 829	FALSE / TRUE
The result of performing the selected operation		


Functional Description

C-80 Programming

Operation Description

1-1 EDGE(A)

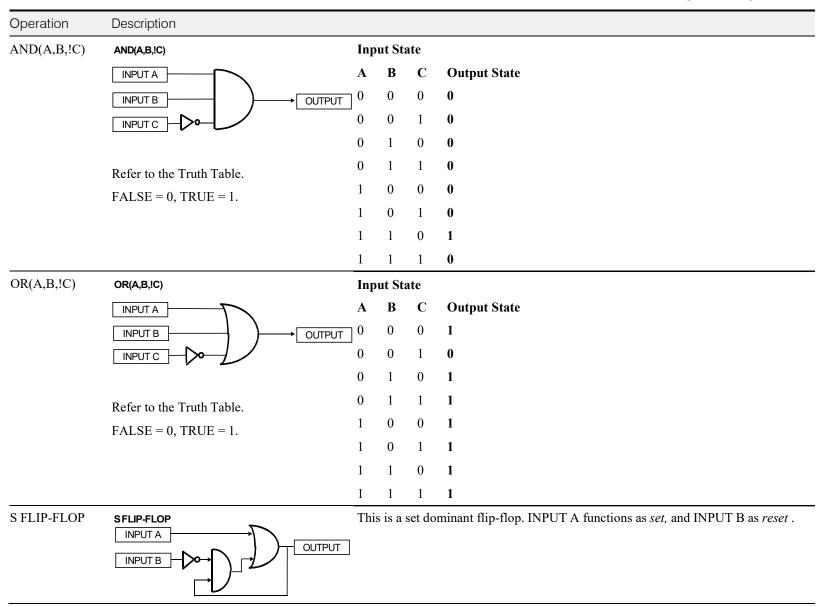

Rising Edge Trigger

Input B is not used.

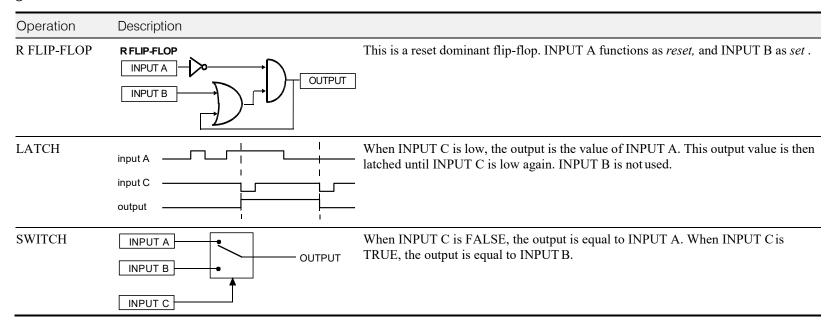
This function outputs a pulse of 5ms duration when INPUT A to the block becomes TRUE. When INPUT C is TRUE, the output is inverted.

The output is held TRUE for one execution of the function block diagram.

1-0 EDGE(A)



Falling Edge Trigger


Input B is not used.

This function outputs a pulse of 20ms duration when INPUT A to the block becomes FALSE. When INPUT C is TRUE, the output is inverted.

The output is held TRUE for one execution of the function block diagram.

C-82 Programming

MMI Menu Map MENUS VIEW LEVEL LANGUAGE ENTER PASSWORD CHANGE PASSWORD

MENUS

Use this block to select one of three MMI menu structures, to set a display language, and to protect the Keypad with a password.

		FUNCTION BLOCKS\MENUS\MENUS		
STANDARD	_	[37]	VIEW LEVEL	
ENGLISH	_	[304]	LANGUAGE	
0x0000	-	[120]	ENTER PASSWORD	
0x0000	100	[121]	CHANGE PASSWORD	

MENUS		
Parameter	Tag	Range
VIEW LEVEL	37	BASIC / STANDARD / ADVANCED
This parameter controls which p effects of these selections.	arameters and menus are visible on the MM	I. Refer to Chapter 6: "The Keypad" -The Menu System Map to see the
LANGUAGE	304	ENGLISH / OTHER
Selects the MMI display languag the Display Language.	ge. Other languages are available, please con	tact DC900P Drives. Refer also to Chapter 6: "The Keypad" - Selecting
ENTER PASSWORD	120	0x0000 to 0xFFFF
Refer to Chapter 6: "The Keypao	d" - Password Protection for further instructi	on.
CHANGE PASSWORD	121	0x0000 to 0xFFFF
Refer to Chapter 6: "The Keypao	d" - Password Protection for further instructi	on.

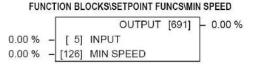
C-84 Programming

MMI Menu Map

1 FUNCTION BLOCKS

2 SETPOINT FUNCTIONS

3 MIN SPEED
OUTPUT

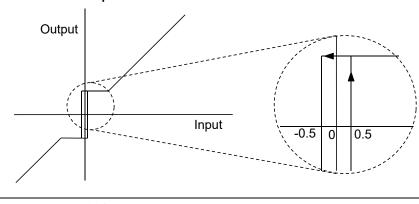

MMI Menu Map

SETUP PARAMETERS

2 RAMPS
INPUT
MIN SPEED

MIN SPEED

The Min Speed function block may be used to prevent the drive running with a zero setpoint.



MIN SPEED

Parameter	Tag	Range
INPUT	5	-105.00 to 105.00 %
Input value.		
MIN SPEED	126	0.00 to 100.00 %

The minimum speed clamp is fully bi-directional and operates with a 0.5% hysterisis. If this parameter is less than 0.5% it is ignored and OUTPUT = INPUT.

Minimum Speed

OUTPUT 691 -.xx %

Clamped value of input.

MMI Menu Map

1 SYSTEM

miniLINK 2

VALUE 1 VALUE 2 VALUE 3 VALUE 4 VALUE 5 VALUE 6 VALUE 7 VALUE 8

VALUE 9 VALUE 10 VALUE 11 VALUE 12 VALUE 13 VALUE 14

LOGIC 2 LOGIC 3 LOGIC 4 LOGIC 5 LOGIC 6

LOGIC 7 LOGIC 8

LOGIC 1

miniLINK

These parameters are general purposetags.

These parameters are used extensively in conjunction with communications masters in order to map the field bus parameters into the drive. Refer to the appropriate Tech Box manual.

FUNCTION BLOCKS\COMMUNICATIONS\miniLINK

0.00 %	_[[339]	VALUE 1
0.00 %	_	S	VALUE 2
0.00 %	_	70	VALUE 3
0.00 %	_	[342]	VALUE 4
0.00 %	_	[343]	VALUE 5
0.00 %	-	[344]	VALUE 6
0.00 %	-	[345]	VALUE 7
0.00 %	-	[379]	VALUE 8
0.00 %	-	[380]	VALUE 9
0.00 %	100	[381]	VALUE 10
0.00 %	_	[382]	VALUE 11
0.00 %	-	[383]	VALUE 12
0.00 %	-	[384]	VALUE 13
0.00 %	-	[385]	VALUE 14
OFF	-	[346]	LOGIC 1
OFF	_	[347]	LOGIC 2
OFF	1	[348]	LOGIC 3
OFF	-	[349]	LOGIC 4
OFF	-	[350]	LOGIC 5
OFF	-	[351]	LOGIC 6
OFF	-	[352]	LOGIC 7
OFF	-	[353]	LOGIC 8

miniLINK

Parameter	Tag	Range
VALUE 1 to VALUE 14	339 to 385	-300.00 to 300.00 %
General purpose inputs.		
LOGIC 1 to LOGIC 8	346 to 353	OFF / ON
General purpose logic inputs.		

C-86 Programming

MMI Menu Map 1 FUNCTION BLOCKS

2 MISCELLANEOUS

3 MULTIPLEXER

INPUT 0 INPUT 1

INPUT 2

INPUT 3 INPUT 4

INPUT 5

INPUT 6

INPUT 7

INPUT 8 INPUT 9

INPUT 10

INPUT 11

INPUT 12 INPUT 13

INPUT 14

INPUT 15

OUTPUT

MULTIPLEXER

Each block collects together 16 Boolean input values into a single word.

For example, one may be used to collect individual bits within a word for efficient access from a communications master.

FUNCTION BLOCKS\MISCELLANEOUS\MULITPLEXER

	ſ		OUTPUT	[1128]	- 0x0000
ALSE	-	[1129]	INPUT 0		
ALSE		[1130]	INPUT 1		
ALSE	2	[1131]	INPUT 2		
ALSE	-	[1132]	INPUT 3		
ALSE	-	[1133]	INPUT 4		
ALSE	1	[1134]	INPUT 5		
ALSE	-	[1135]	INPUT 6		
ALSE	-	[1136]	INPUT 7		
ALSE	=	[1137]	INPUT 8		
ALSE	-	[1138]	INUPT 9		
ALSE	-	[1139]	INPUT 10		
ALSE	-	[1140]	INPUT 11		
ALSE		[1141]	INPUT 12		
ALSE	-	[1142]	INPUT 13		
ALSE	-	[1143]	INPUT 14		
ALSE	-	[1144]	INPUT 15		
	ALSE ALSE ALSE ALSE ALSE ALSE ALSE	ALSE -	ALSE - [1130] ALSE - [1131] ALSE - [1132] ALSE - [1133] ALSE - [1134] ALSE - [1136] ALSE - [1137] ALSE - [1138] ALSE - [1139] ALSE - [1140] ALSE - [1141] ALSE - [1142] ALSE - [1143]	ALSE - [1129] INPUT 0 ALSE - [1130] INPUT 1 ALSE - [1131] INPUT 2 ALSE - [1132] INPUT 3 ALSE - [1133] INPUT 4 ALSE - [1134] INPUT 5 ALSE - [1136] INPUT 6 ALSE - [1136] INPUT 7 ALSE - [1137] INPUT 8 ALSE - [1138] INUT 9 ALSE - [1139] INPUT 10 ALSE - [1140] INPUT 11 ALSE - [1141] INPUT 12 ALSE - [1141] INPUT 13 ALSE - [1142] INPUT 13 ALSE - [1143] INPUT 14	ALSE - [1130] INPUT 1 ALSE - [1131] INPUT 2 ALSE - [1132] INPUT 3 ALSE - [1133] INPUT 4 ALSE - [1134] INPUT 5 ALSE - [1135] INPUT 6 ALSE - [1136] INPUT 7 ALSE - [1137] INPUT 8 ALSE - [1137] INPUT 8 ALSE - [1138] INUPT 9 ALSE - [1139] INPUT 10 ALSE - [1140] INPUT 11 ALSE - [1141] INPUT 12 ALSE - [1142] INPUT 13 ALSE - [1143] INPUT 14

MULTIPLEXER

Parameter	Tag	Range
INPUT 0 to INPUT 15	1129 to 1144	FALSE / TRUE
The Boolean inputs to be assembled	into a single word.	
OUTPUT	1128	0x0000 to 0xFFFF
The resulting word.		

FUNCTION BLOCKS/MENUS/OP-STATION

MMI Menu Map SETUP PARAMETERS 2 OP-STATION 3 SET UP SETPOINT JOG SETPOINT LOCAL KEY ENABLE

OPSTATION

MMI Set-up options and Local setpoint information.

	•	UNUTIO	NA DEOCKOMIENCOIOI -OTATION
TRUE		[511]	LOCAL KEY ENABLE
0.00 %	-	[512]	SETPOINT
5.00 %	_	[513]	JOG SETPOINT
10.0 s	-	[514]	RAMP ACCEL TIME
10.0 s	-	[515]	RAMP DECEL TIME
FORWARD	-	[516]	INITIAL DIR
REMOTE	-	[517]	INITIAL MODE
LOCAL	-	[518]	INITIAL VIEW
0.00 %	-	[519]	INITIAL SETPOINT
5.00 %	-	[520]	INITIAL JOG

MMI Menu Map

SETUP PARAMETERS

2 OP-STATION

3 START UP VALUES

INITIAL SETPOINT INITIAL JOG INITIAL DIRECTION INITIAL VIEW INITIAL MODE

1 SETUP PARAMETERS

2 OP-STATION

OCAL RAMP

RAMP ACCEL TIME RAMP DECEL TIME

OP STATION

Parameter Tag Range **LOCAL KEY ENABLE** 511 FALSE / TRUE Enables the LOCAL/REMOTE control key on the op-station. Set to TRUE to allow the operator to toggle between local and remote modes. SETPOINT 512 0.00 to 100.00 % SET UP menu - Actual value of local setpoint. This value is not persistent. 0.00 to 100.00 % 513 JOG SETPOINT

SET UP menu - Actual value of local jog setpoint. This value is not persistent.

RAMP ACCEL TIME 514 0.1 to 600.0 s

Acceleration time used while in Local mode.

RAMP DECEL TIME 515 0.1 to 600.0 s

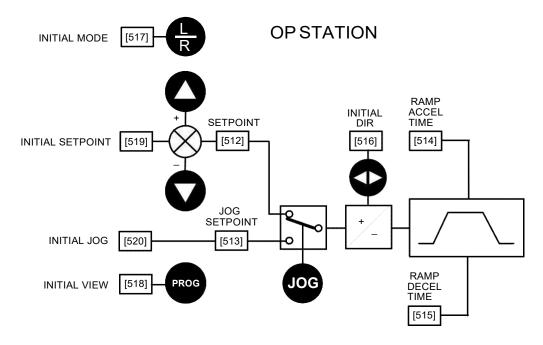
Deceleration time used while in Local mode.

NINTERILLED ALUES menu - Start-up mode of logal direction on power-up. Set to TRUE for Forward. REVERSE / FORWARD

INITIAL MODE 517 **REMOTE / LOCAL**

START UP VALUES menu - Start-up mode of Keypad LOCAL/REMOTE control key on power-up. Set to TRUE for Local mode.

518 LOCAL / PROGRAM **INITIAL VIEW**


START UP VALUES menu - Start-up mode of Keypad PROG key on power-up. Set to TRUE for Program mode to see the local setpoint.

C-88 Programming

OP STATION

Parameter	Tag	Range			
INITIAL SETPOINT 519 0.00 to 100.00 % START UP VALUES menu - Default value of local setpoint on power-up.					
INITIAL JOG	520	0.00 to 100.00 %			
START UP VALUES menu - Default Value of local jog setpoint on powerup.					

Functional Description

Local Setpoint (only active when the drive is in Local mode)

MMI Menu Map

2 SPECIAL BLOCKS

3 PID

PROP. GAIN
INT.TIME.CONST
DERIVATIVE TC
POSITIVE LIMIT
NEGATIVE LIMIT

O/P SCALER(TRIM)

_INPUT 1 INPUT 2

RATIO 1

RATIO 2 DIVIDER 1

DIVIDER 2

ENABLE

INT. DEFEAT

FILTER T.C.

MMI Menu Map

DIAGNOSTICS

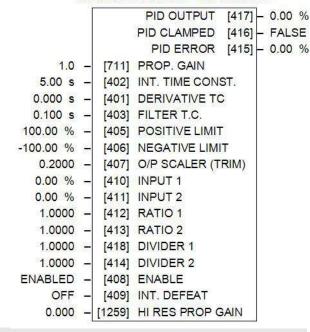
PID OUTPUT
PID CLAMPED
PID ERROR

MMI Menu Map

HI RES PROP GAIN

PID

This is a general purpose PID block which can be used for many different closed loop control applications.


The PID feedback can be loadcell tension, dancer position or any other transducer feedback such as pressure, flow etc.

This block is ignored by the drive unless SYSTEM::CONFIGURE I/O::BLOCK DIAGRAM::PID O/P DEST is connected to a non-zero tag.

Features:

- Independent adjustment of gain and time constants.
- Additional first-order filter (F).
- Functions P, PI, PD, PID with/without F individually selected.
- Ratio and divider for scaling each input.
- Independent positive and negative limits.
- Output scaler (Trim).
- Gain profiled by diameter for centre-driven winder control.

FUNCTION BLOCKS\SETPOINT FUNCS\PID

PID

Parameter	Tag	Range
PROP. GAIN	711	0.0 to 100.0

The maximum limit of the proportional gain. This is a pure gain factor which shifts up or down the whole Bode PID transfer function leaving the time constants unaffected. A value of P = 10.0 means that, for an error of 5%, the proportional part (initial step) of the PID output will be: $10 \times [1 + (Td/Ti)] \times 5\%$, i.e. approx. 50% for Td << Ti. Also refer to HI RES PROP GAIN below.

INT. TIME CONST.	402	0.01 to 100.00 s	
The integral time constant (Ti)			
DERIVATIVE TC	401	0.000 to 10.000 s	
The derivative time constant (Td) S	et this value to 0 000 to remove the derivative	term	

The derivative time constant (Td). Set this value to 0.000 to remove the derivative term.

FILTER T.C. 403 0.000 to 10.000 s

A first-order filter for removing high frequency noise from the PID output. When set to 0.000 the filter is removed. The high frequency lift of the transfer function is determined by the ratio k of the Derivative Time Const (Td) over the Filter Time Constant (Tf) - typically 4 of 5.

C-90 Programming

PID		
Parameter	Tag	Range
POSITIVE LIMIT	405	0.00 to 105.00 %
The upper limit of the PID algorithm.		
NEGATIVE LIMIT	406	-105.00 to 0.00 %
The lower limit of the PID algorithm.		
O/P SCALER (TRIM)	407	-3.0000 to 3.0000
	ied by in order to give the final PID Output. Normally	
INPUT 1	410	-300.00 to 300.00 %
PID setpoint input. This can be either a position		
INPUT 2	411	-300.00 to 300.00 %
PID feedback input. This can be either a positi	on/tension feedback or a reference/offset	
RATIO 1	412	-3.0000 to 3.0000
This multiplies Input 1 by a factor (Ratio 1).		
RATIO 2	413	-3.0000 to 3.0000
This multiplies Input 2 by a factor (Ratio 2).		
DIVIDER 1	418	-3.0000 to 3.0000
This divides Input 1 by a factor (Divider 1).		
DIVIDER 2	414	-3.0000 to 3.0000
This divides Input 2 by a factor (Divider 2).		
ENABLE	408	DISABLED / ENABLED
Enables or disables the PID output.		
INT. DEFEAT	409	OFF / ON
When ON, the Integral term is disabled. The bl	ock transfer function then becomes P+D only.	
HI RES PROP GAIN	1259	0.000 to 100.000
Additive, high resolution, proportional term ga 1.1 (unused).	in. This value is added to PROP GAIN to form the total	al proportional term gain. Its default value is
PID OUTPUT	417	xx %
Refer to Chapter 6: "The Keypad" - The Keypa	ad Menus (DIAGNOSTICS).	
PID CLAMPED	416	FALSE / TRUE
Refer to Chapter 6: "The Keypad" - The Keypa	nd Menus (DIAGNOSTICS).	
PID ERROR	415	xx %
Refer to Chapter 6: "The Keypad" - The Keypa	nd Menus (DIAGNOSTICS).	

Functional Description

The following block diagram shows the internal structure of the PID block.

PID is used to control the response of any closed loop system. It is used specifically in system applications involving the control of drives to allow zero steady state error between Reference and Feedback, together with good transient performance.

The block executes a Proportional Gain + Integral + Derivative control algorithm, with an added filter to attenuate high-frequency noise. You can select P, PD, PI or PID as required.

Proportional Gain (PROP. GAIN)

This is used to adjust the basic response of the closed loop control system. It is defined as the portion of the loop gain fed back to make the complete control loop stable. The PID error is multiplied by the Proportional Gain to produce an output.

Integral (INT. TIME CONST.)

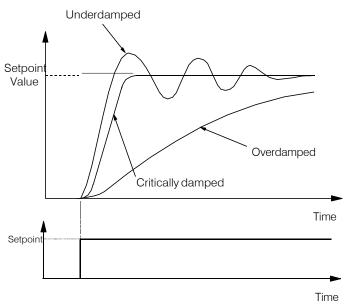
The Integral term is used to give zero steady state error between the setpoint and feedback values of the PID. If the integral is set to a small value, this will cause an underdamped or unstable control system.

Derivative (DERIVATIVE TC)

This is used to correct for certain types of control loop instability, and therefore improve response. It is sometimes used when heavy or large

inertia rolls are being controlled. The derivative term has an associated filter to suppress high frequency signals.

The algorithm modifies the error between the setpoint and the feedback with the proportional, integral, and derivative terms. The error is clamped internally to $\pm 105\%$ maximum.


The proportional, integral, and derivative terms are scaled by PROP. GAIN, INT. TIME CONST., and DERIVATIVE TC respectively. An additional gain profiler can modify the proportional gain as the roll diameter changes. The block diagram shows how the proportional gain changes when using the profiler.

Proportional Gain

Proportional gain scales the output based upon the input error. Increasing PROP. GAIN will improve the response time while increasing overshoot. MODE selects the proportional gain profile. When set to 0, the proportional gain remains constant over the entire roll. Changing the value of MODE increases the profile as shown opposite.

You should try to achieve a critically damped response which allows the mechanics to track as precisely as possible a step change on the setpoint.

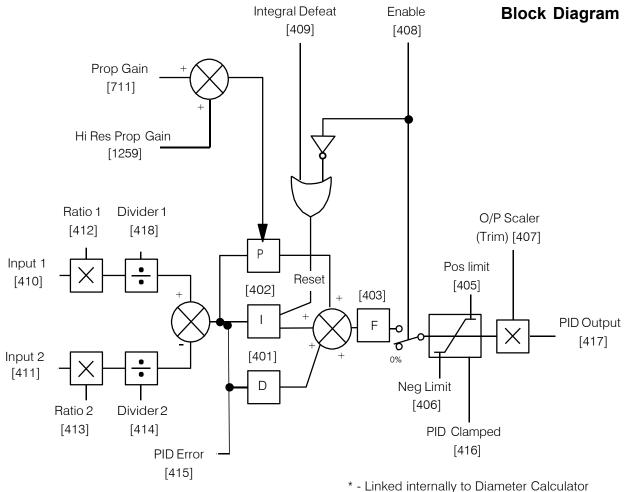
Critically Damped Response

C-92 Programming

Integral Gain

Integral eliminates steady-state error. Reducing INT. TIME CONST. improves the response, however, if it is set too short it will cause instability. The integral value is clamped internally by the settings of POSITIVE LIMIT and NEGATIVE LIMIT. It is also held at the last value when the PID CLAMPED output is TRUE. Setting INT. DEFEAT to ON will disable the integral gain term.

Derivative Gain


Derivative gain instantaneously boosts the PID output signal. Increasing DERIVATIVE TC decreases the damping, which in most cases causes overshoot and oscillations resulting in an unacceptable system response.

NOTE For most applications, derivative gain is never used and is usually left at its default value of 0.000 seconds.

Derivative gain can improve response in some dancer tension controlled systems, particularly those systems with high inertia dancers which need an instantaneous response to overcome the weight of the dancer roll. For loadcell controlled tension systems, derivative gain is almost *never* used.

- In underdamped systems, the output oscillates and the settling time increases.
- Critically damped systems have no overshoot or oscillations. They reach the setpoint within the desired response time.
- Overdamped systems do not oscillate but do not reach the setpoint within the desired response time.

NOTE The EMULATE 900P parameter in the CONFIGURE DRIVE function block affects the time constants used in the PID. If this parameter is non-zero, the filter, integral and derivative time constants used within the PID are four times greater than those shown on the input parameters. This emulates the behaviour of earlier versions of the 900P. Refer to "Execution Rules", D-2.

- Linked internally to Diameter Odicalator

Operators can read the PID error, PID output, setpoint and feedback on the drive's MMI by monitoring the following values:

- PID ERROR : displayed in the DIAGNOSTICS menu
- PID OUTPUT : displayed in the DIAGNOSTICS menu
- SETPOINT: monitored at SETUP PARAMETERS::SPECIAL BLOCKS::PID::INPUT 1
- FEEDBACK: monitored at SETUP PARAMETERS::SPECIAL BLOCKS::PID::INPUT 2

C-94 Programming

MMI Menu Map

2 MOTOR CONTROL

PLL STATE
PHASE ERROR
PLL MAINS FREQ

PLL (PHASE LOCKED LOOP)

The phase locked loop function block allows the drive to ride through short disturbances to the supply voltage, frequency or phase and provides immunity to waveform distortion.

FUNCTION BLOCKS\MOTOR CONTROL\PLL

Γ	PLL STATE	[1198]	-	STOPPED
	PHASE ERROR	[1199]	-	0.00
	PLL MAINS FREQ	[1201]	-	0.00

PLL (PHASE LOCKED LOOP)

Parameter Tag Range	DIL STATE	1198	
	Parameter	Tag	Range

Indicates the current operating state of the phase locked loop function block. Normally the PLL will reside in the LOCKED state after close of the 3-phase line contactor. The FAIL state results if the supply frequency moves beyond the acceptable operating range.

- 0:STOPPED
- 1:1ST CODING EDGE
- 2: READ EDGES
- 3: MAINS PERIOD
- 4: LOCKED
- 5: UNLOCKED
- 6: FAIL

PHASE ERROR 1199 -.xx

The instantaneous angle error between the zero-crossing detection of the line supply and the reference output from the PLL function block.

PLL MAINS FREQ 1201 -.xx

The measured 3-phase line supply frequency at the output of the PLL function block.

MMI Menu Map

1 SERIAL LINKS

2 PNO CONFIG

PNO 112 PNO 113

PNO 114 PNO 115

PNO 116

PNO 117

PNO 118

_PNO 120

PNO 121

PNO 122 PNO 123

PNO 124

PNO 125

PNO 126

PNO 127

PNO CONFIG

The PNO parameters are used in conjunction with the EI ASCII and EI BINARY communications protocols.

Refer to Appendix A: "Serial Communications".

FUNCTION BLOCKS\COMMUNICATIONS\PNO CONFIG 0 [312] PNO 112 0 [313] PNO 113 0 -[314] PNO 114 0 -[315] PNO 115 0 -[316] PNO 116 [317] PNO 117 0 -[318] PNO 118 0 -[319] PNO 119 379 -[320] PNO 120 380 -[321] PNO 121 381 -[322] PNO 122 382 -[323] PNO 123 383 -[324] PNO 124 384 -[325] PNO 125 385 -[326] PNO 126 [327] PNO 127

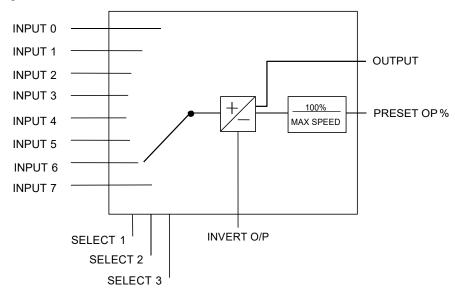
PNO CONFIG

Parameter	Tag	Range
PNO 112 - 127	312 to 327	-1276 to 1276
Indirect access parameters.		

C-96 Programming

MMI Menu Map 1 SETUP PARAMETERS 2 PRESET SPEEDS SELECT 1 SELECT 2 SELECT 3 INVERT O/P MAX SPEED LIMIT **GRAY SCALE** INPUT 0 INPUT 1 INPUT 2 INPUT 3 INPUT 4 INPUT 5 INPUT 6 INPUT 7 PRESET O/P OUTPUT

PRESET SPEEDS


The Preset Speeds block allows you to select one of eight preset inputs, which in turn may be connected to other blocks of inputs.

FUNCTION BLOCKS\SETPOINT FUNCS\PRESET SPEEDS PRESET O/P [572] - 0.00 % OUTPUT FPM [593] - 0.0 FALSE - [560] SELECT 1 **FALSE** - [561] SELECT 2 FALSE - [562] SELECT 3 FALSE - [563] INVERT O/P [559] MAX SPEED 100.0 RPM FALSE - [600] LIMIT **FALSE** - [610] GRAY SCALE 0.0 -[564] INPUT 0 0.0 - [565] INPUT 1 0.0 - [566] INPUT 2 0.0 - [567] INPUT 3 0.0 - [568] INPUT 4 0.0 - [569] INPUT 5 0.0 - [570] INPUT 6 0.0 - [571] INPUT 7

PRESET SPEEDS		
Parameter	Tag	Range
SELECT 1	560	FALSE / TRUE
Select inputs 1.		
SELECT 2	561	FALSE / TRUE
Select inputs 2.		
SELECT 3	562	FALSE / TRUE
Select inputs 3.		
INVERT O/P	563	FALSE / TRUE
Changes the sign of the output. If TRUE	, the output is of the opposite sign to the s	selected input.
MAX SPEED	559	0.1 to 3000.0 RPM
Scaler for PRESET OP (%).		

PRESET SPEEDS		
Parameter	Tag	Range
LIMIT	600	FALSE / TRUE
Clamp output to MAX SPEED if TR	UE.	
GRAY SCALE	610	FALSE / TRUE
Selects Gray Scale encoding when TI preventing the mis-selection of interre	RUE, Binary encoding when FALSE. When gray scale is sele nediate states.	ected, only one input changes between state
INPUT 0 to INPUT 7	564, 565, 566, 567, 568, 569, 570, 571	-3000.0 to 3000.0
Pre-set input variables.		
PRESET O/P	572	xx %
PRESET O/P Scales the selected preset input by M		−.xx %
		xx %

Functional Description

C-98 Programming

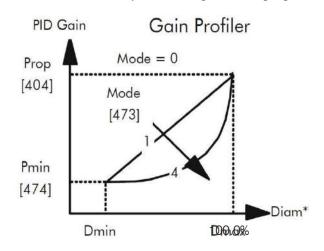
Selection Table

Three Boolean variables used to select between one of the 8 preset values.

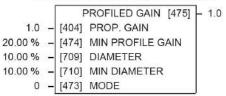
BINARY ENCODING			
Select 3	Select 2	Select 1	Input
FALSE	FALSE	FALSE	0
FALSE	FALSE	TRUE	1
FALSE	TRUE	FALSE	2
FALSE	TRUE	TRUE	3
TRUE	FALSE	FALSE	4
TRUE	FALSE	TRUE	5
TRUE	TRUE	FALSE	6
TRUE	TRUE	TRUE	7

GRAY SCALE ENCODING			
Select 3	Select 2	Select 1	Input
FALSE	FALSE	FALSE	0
FALSE	FALSE	TRUE	1
FALSE	TRUE	TRUE	2
FALSE	TRUE	FALSE	3
TRUE	TRUE	FALSE	4
TRUE	TRUE	TRUE	5
TRUE	FALSE	TRUE	6
TRUE	FALSE	FALSE	7

MMI Menu Map 1 SETUP PARAMETERS 2 SPECIAL BLOCKS 3 PID PROP. GAIN MODE MIN PROFILE GAIN PROFILED GAIN PROFILED GAIN FUNCTION BLOCKS


2 WINDER

3 PROFILED GAIN
DIAMETER


MIN DIAMETER

PROFILED GAIN

This function block may be used to profile the proportional gain input to the PID block.

FUNCTION BLOCKS\WINDER\PROFILED GAIN

PROFILED GAIN

Parameter	Tag	Range
PROP. GAIN	404	0.0 to 100.0
The nominal gain prior to profiling.		
MIN PROFILE GAIN	474	0.00 to 100.00 %

This expresses the minimum gain required at minimum diameter (core) as a percentage of the (maximum) P gain at full diameter (100%), when MODE > 0.

DIAMETER 709 0.00 to 100.00 %

The actual measured diameter. If appropriate, this may be connected to the DIAMETER output parameter in the DIAMETER CALC function block.

MIN DIAMETER 710 0.00 to 100.00 %

Set to the minimum core diameter (normally the empty core diameter) as a percentage of the maximum roll diameter. If appropriate, this may be connected to the MIN DIAMETER parameter in the DIAMETER CALC function block.

C-100 Programming

PROFILED GAIN

Parameter	Tag	Range
MODE	473	0 to 4
This determines the shape of	f the proportional gain profile. The higher the set	ing, the steeper the curve of the profiled gain.
For Mode = 0, Profiled Gain = constant = P.		
For Mode = 1 Profiled Gair	a = A * (diameter - min diameter) + B	

For Mode = 1, Profiled Gain = A * (diameter - min diameter) + B.

For Mode = 2, Profiled Gain = $A * (diameter - min diameter)^2 + B$.

For Mode = 3, Profiled Gain = $A * (diameter - min diameter)^3 + B$.

For Mode = 4, Profiled Gain = $A * (diameter - min diameter)^4 + B$.

PROFILED GAIN 475 -.x

The proportional gain after profiling by a profiler block which varies the gain versus diameter. This is primarily to be used with Speed Profiled Winders for compensation against varying diameter and therefore inertia.

- When MODE is not ZERO (see above) this overrides the P gain above.
- When MODE = 0, then PROFILED GAIN = PROP. GAIN.

MMI Menu Map 1 SETUP PARAMETERS 2 RAISE/LOWER RESET VALUE INCREASE RATE DECREASE RATE RAISE INPUT LOWER INPUT MIN VALUE MAX VALUE

MMI Menu Map

EXTERNAL RESET

1 FUNCTION BLOCKS

2 SETPOINT FUNCS

3 RAISE/LOWER

RAISE/LOWER O/P

RAISE/LOWER

This function block acts as an internal motorised potentiometer (MOP).

The OUTPUT is not preserved when the drive is powered-down.

FUNCT	OI	N BLOC	KS\SETPOINT FUNC	SIRAIS	E/LOWE	₹ .
	1	RAI	ISE/LOWER O/P	[264]	- 0.00	%
0.00 %	-	[255]	RESET VALUE	81 000		
10.0 s	_	[256]	INCREASE RAT	E		
10.0 s	-	[257]	DECREASE RAT	ΓE		
FALSE	-	[261]	RAISE INPUT			
FALSE	-	[262]	LOWER INPUT			
-100.00 %	-	[258]	MIN VALUE			
100.00 %	-	[259]	MAX VALUE			
FALSE	_	[307]	EXTERNAL RES	ET		

RAISE/LOWER		
Parameter	Tag	Range
RAISE/LOWER O/P	264	xx %
The output value.		
RESET VALUE	255	-300.00 to 300.00 %

This reset value is pre-loaded directly into the output when EXTERNAL RESET is TRUE, or at power-up. It is clamped by MIN VALUE and MAX VALUE.

INCREASE RATE 256 0.1 to 600.0 s

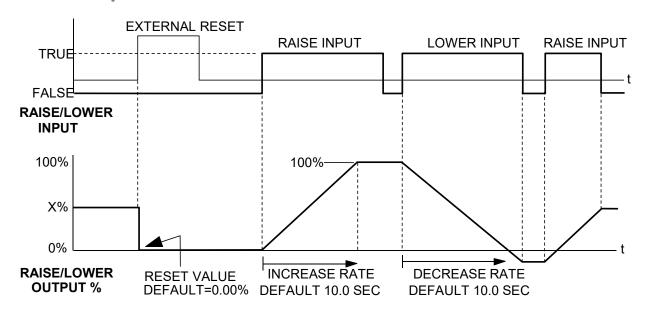
Rate of change of an increasing output value. An increasing value is defined as the output ramping away from zero.

DECREASE RATE 257 0.1 to 600.0 s

Rate of change of a decreasing output value. A decreasing value is defined as the output ramping towards zero.

RAISE INPUT 261 FALSE / TRUE

Command to raise the output value. When TRUE, increases the output at the rate determined by INCREASE RATE.


LOWER INPUT 262 FALSE / TRUE

Command to lower the output value. When TRUE, decreases the output at the rate determined by DECREASE RATE.

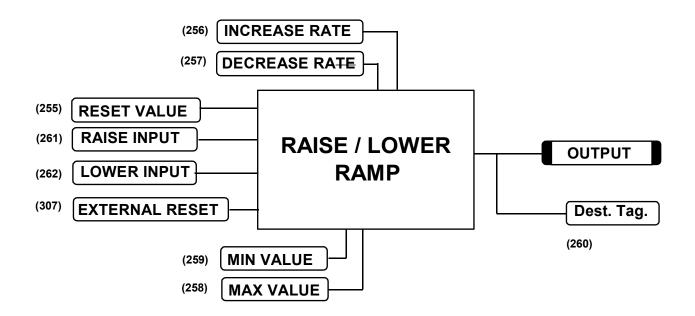
C-102 Programming

RAISE/LOWER			
Parameter	Tag	Range	
MIN VALUE	258	-300.00 to 300.00 %	
Minimum ramp output clamp. This is a plain clamp, not a ramped "min speed" setting.			
MAX VALUE	259	-300.00 to 300.00 %	
Maximum ramp output clamp.			
EXTERNAL RESET 307 FALSE / TRUE			
When TRUE, sets the output of the Raise/Lower block to the RESETVALUE.			

Functional Description

The diagram above illustrates the raise/lower functionality.

When EXTERNAL RESET is set TRUE, the raise/lower output resets to RESET VALUE (default = 0.00%).


When RAISE INPUT is TRUE, the output increases at INCREASE RATE. The output cannot exceed MAX VALUE.

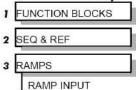
The reverse is true when LOWER INPUT is TRUE: LOWER INPUT reduces the output at DECREASE RATE. The output cannot drop below MIN VALUE.

The ramp is held at its last value when the RAISE and LOWER INPUT are removed.

Setting both RAISE INPUT and LOWER INPUT to TRUE at the same time creates a ramp hold condition.

If MIN VALUE is greater than MAX VALUE the output is forced to zero.

If Reset, Output = Reset Value (Clamped)


C-104 Programming

MMI Menu Map SETUP PARAMETERS RAMPS RAMP ACCEL TIME RAMP DECEL TIME RAMP HOLD INVERT % S-RAMP RAMPING THRESH. AUTO RESET

MMI Menu Map

RESET VALUE

EXTERNAL RESET

MMI Menu Map

PAMPING
RAMP OUTPUT

RAMPS

The RAMPS parameters set the shape and duration of the ramp used for starting and changing speeds.

NOTE The STOP RATES function block contains a separate deceleration rate for controlled stopping of the drive.

By default the inputs are ANIN 3 (A4) for a ramped speed input, and DIGIN 2 (C7) to switch RAMP HOLD. The input signal to the block is clamped by MIN SPEED, which sets the minimum ramp input speed when the drive is enabled. The default output connection is to SPEEDLOOP:: SETPOINT 3.

RAMP INPUT is internally routed to the JOG/SLACK function block to be modified as determined by the JOG inputs. The RAMPS block then shapes the signal to produce the RAMP OUTPUT signal.

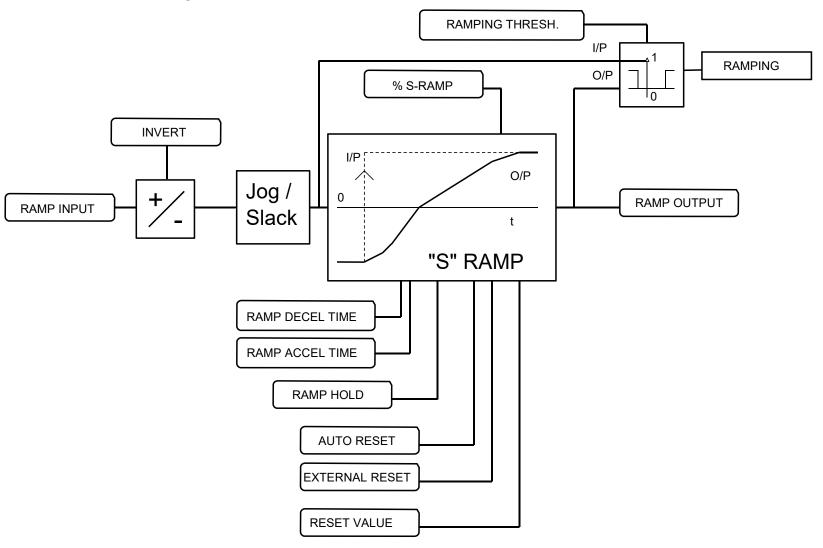
RAMP OUTPUT [85] - 0.00 % RAMPING [113] - FALSE 10.0 s [2] RAMP ACCEL TIME 10.0 s [3] RAMP DECEL TIME OFF [118] RAMP HOLD FALSE [620] INVERT 0.00 % [697] RAMP INPUT 2.50 % [266] % S-RAMP 0.50 % [286] RAMPING THRESH. ENABLED [287] AUTO RESET DISABLED [288] EXTERNAL RESET 0.00 % - [422] RESET VALUE

FUNCTION BLOCKS\SEQ & REF\RAMPS

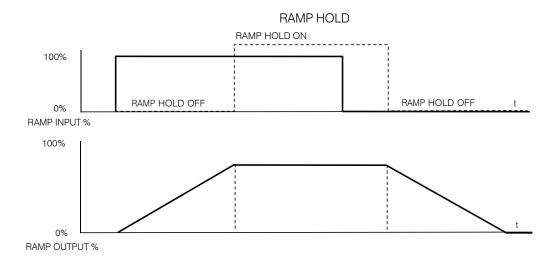
The RAMPING output becomes TRUE when the absolute value of the difference between RAMP OUTPUT and the JOG/SLACK function block output exceeds RAMPING THRESH.

RAMP ACCEL TIME and RAMP DECEL TIME set the acceleration and deceleration times taken for input changes. % S-RAMP adds a "S" shaped section to the linear ramp. When set to 0.00%, the ramp will be linear. As the percentage is increased, 350% of the S-RAMP time is added to the linear ramp creating more gradual starting and stopping. The formula for the actual ramp time is shown below. Ramp time is the value of parameters RAMP ACCEL TIME or RAMP DECEL TIME.

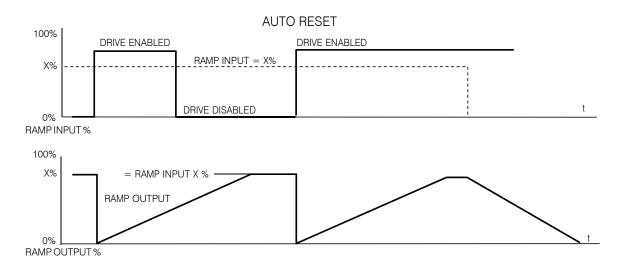
Actual Ramp Time = RAMP TIME x (3.5 x % S-RAMP/100 + 1)

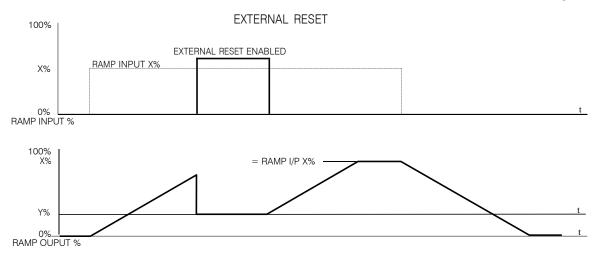

RAMP HOLD stops the ramp from changing. When DIGIN 2 (C7) is ON, the ramp stays at the last ramp value.

The reset signal can have two sources, a RUN signal or an external reset signal. When AUTO RESET is ENABLED, the ramp resets whenever a Run signal is given at terminal C3. Connecting a digital input to EXTERNAL RESET allows an external source to reset the ramp.


RAMPS		
Parameter	Tag	Range
RAMP ACCEL TIME	2	0.1 to 600.0 s
The acceleration time for 100% change.		
RAMP DECEL TIME	3	0.1 to 600.0 s
The deceleration time for 100% change.		

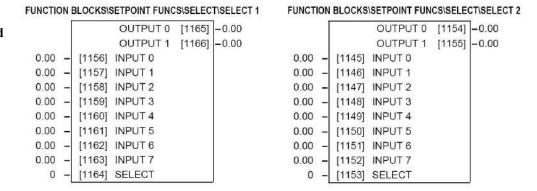
RAMPS		
Parameter	Tag	Range
RAMP HOLD	118	OFF / ON
When ON, the ramp output is held a	t its last value. This is overridden by a ran	np reset.
INVERT	620	FALSE / TRUE
Inverts the RAMP INPUT signal.		
RAMP INPUT	5	-105.00 to 105.00 %
Input value.		
% S-RAMP	266	0.00 to 100.00 %
Percentage of ramp with S-shaped ra	ate of change. A value of zero is equivaler	t to a linear ramp. Changing this value affects the ramp times.
RAMPING THRESH.	286	0.00 to 100.00 %
Ramping flag threshold level. The tl	nreshold is used to detect whether the ram	p isactive.
AUTO RESET	287	DISABLED / ENABLED
	whenever SYSTEM RESET is TRUE. (Senabled, i.e. every time the drive is starte	SYSTEM RESET Tag 374 is an internal flag that is set TRUE for one d).
EXTERNAL RESET	288	DISABLED / ENABLED
When ENABLED, the ramp is reset	to RESET VALUE. EXTERNAL RESET	does not depend on AUTO RESET for its operation.
RESET VALUE	422	-300.00 to 300.00 %
	or when the ramp is reset. In order to cate RESET VALUE Tag No. 422 (destination	h a spinning load smoothly ('bumpless transfer') connect SPEED n).
RAMP OUTPUT	85	xx %
Setpoint ramp output.		
Setpoint rump output.		
RAMPING	113	FALSE / TRUE


Functional Description



The ramp will function when a ramp input is present. When DIGIN 2 (C7) is ON, RAMP HOLD stops the ramp from changing. Even when the ramp input signal is removed, RAMP HOLD keeps the ramp output from changing. Once RAMP HOLD is OFF, the ramp resumes.

When AUTO RESET is ENABLED, ramp output resets to RESET VALUE each time the drive is enabled. In this example RESET VALUE is 0.00%. It does not reset if the drive is disabled.


The ramp input is set to X% at time t_0 . The ramp output will increase at the ramp rate. While EXTERNAL RESET is ENABLED, the ramp output resets to RESET VALUE (Y%). When EXTERNAL RESET is DISABLED, the ramp output continues to follow the input signal.

C-110 Programming

MMI Menu Map FUNCTION BLOCKS SETPOINT FUNCS 3 SELECT 4 SELECT 1 4 SELECT 2 INPUT 0 INPUT 1 INPUT 2 INPUT 3 INPUT 4 INPUT 5 INPUT 6 INPUT 7 SELECT OUTPUT 0 OUTPUT 1

SELECT

Used to select a value from one of eight inputs, depending on the value of the select input. A second output is provided to allow the block to be used as two banks of four inputs.

SELECT		
Parameter	Tag	Range
INPUT 0 to INPUT 7	1156 to 1163	-32768.00 to 32768.00
Inputs to the select block		
SELECT	1164	0 to 7
Determines which of the inputs is r routed to OUTPUT 2, otherwise O		IPUT is in the range 0 to 3, INPUT 4 to INPUT 7 respectively is
OUTPUT 0	1165	xx
Selected output		
OUTPUT 1	1166	xx
Alternative selected output from IN	IPUT 4 to INPUT 7 if SELECT is less than 4.	

MMI Menu Map SETUP PARAMETERS

2 AUX I/O

AUX START

AUX ENABLE

JOG SLACK

ENABLE

REM.SEQ.ENABLE

REM. SEQUENCE

SEQ STATUS

MMI Menu Map

DIAGNOSTICS

PROGRAM STOP

COAST STOP

DRIVE START
DRIVE ENABLE

START (C3)

CONTACTOR CLOSED

READY

DRIVE RUNNING

SYSTEM RESET

MMI Menu Map

1 FUNCTION BLOCKS

2 SEQ & REF

3 SEQUENCING

COMMS TIMEOUT
SEQ STATE

SEQUENCING

This function block contains all the parameters relating to the sequencing (start and stop) of the drive.

FUNCTION BLOCKS\SEQ & REF\SEQUENCING SEQ STATUS [537] 0x0000 DRIVE START [82] OFF CONTACTOR CLOSED [83] - FALSE DRIVE ENABLE [84] FALSE DRIVE RUNNING [376] FALSE SYSTEM RESET [374] - FALSE **READY** [125] - FALSE SEQ STATE [114] - SEQ INIT START (C3) [68] OFF PROGRAM STOP [80] FALSE COAST STOP [525] - FALSE ON [161] AUX START ON [227] AUX JOG ON [168] AUX ENABLE OFF [496] JOG/SLACK OFF [497] ENABLE OFF [535] REM.SEQ.ENABLE 0x8000 [536] REM.SEQUENCE [1204] COMMS TIMEOUT 0.0s -

SEQUENCING

Parameter	Tag	Range
AUX START	161	OFF / ON

Software Start/Run command. Auxiliary Start is ANDed with the Start input, C3, to generate Drive Start. This should normally be left ON.

AUX JOG 227 OFF / ON

Software Jog command. Auxiliary Jog is ANDed with the Jog input, Tag 496 (by default C4), to generate Drive Jog. This should normally be left ON.

AUX ENABLE 168 OFF / ON

Software Enable command. Auxiliary Enable is ANDed with the Enable input, Tag 497 (by default C5), to generate Drive Enable. This should normally be left ON.

C-112 Programming

SF	Ω	IFN	CI	NG
JL	W.			

Parameter	Tag	Range
JOG/SLACK	496	OFF / ON

Main jog input which is connected to DIGITAL INPUT C4 by default. The Jog input is ANDed with Auxiliary Jog input, Tag 227, to generate Drive Jog.

ENABLE 497 OFF / ON

Enable input which is connected to DIGITAL INPUT C5 by default. The Enable input is ANDed with Auxiliary Enable input, Tag 168, to generate Drive Enable.

REM.SEQ.ENABLE 535 FALSE / TRUE

(Refer to Chapter 4: "External Control of the Drive"). When enabled, the drive will accept Sequencing commands exclusively from the REM. SEQUENCE parameter, Tag 536.

FALSE - disables REM. SEQUENCE TRUE - enables REM. SEQUENCE

REM.SEQUENCE 536 0x0000 to 0xFFFF

A control word that allows the device to be operated remotely over a field bus.

REM. SEQ. ENABLE must be TRUE to enable this function. (Refer to Chapter 4: "External Control of the Drive")

COMMS TIMEOUT 1204 0.0 to 60.0 s

A watchdog timeout that may be used when the drive is in remote sequencing mode. The watchdog feature is enabled by selecting a non-zero time in this parameter. The watchdog is reset every time the REM.SEQUENCE word, (Tag 536), is written.

SEQ STATUS 537 0x0000 to 0xFFFF

An data word that reports the status of the important system flags that can be read over a field bus. (Refer to Chapter 4: "External Control of the Drive")

DRIVE START 82 OFF / ON

Logical OR of the START and JOG inputs.

CONTACTOR CLOSED 83 FALSE / TRUE

When ON, the main contactor coil is energised. Refer to Terminal Information for D5 & D6 in Appendix E: "Technical Specifications" - Terminal Information.

DRIVE ENABLE 84 FALSE / TRUE

Drive speed and current loop are enabled/quenched.

DRIVE RUNNING 376 FALSE / TRUE

When TRUE, the stack is switched on and enabled.

SEQUENCING		
Parameter	Tag	Range
SYSTEM RESET	374	FALSE / TRUE
Set for one cycle as the drive is enabled.		
READY	125	FALSE / TRUE
The drive is ready to accept an enable signal.		
SEQ STATE	114	See below
0: SEQ INIT 1: SEQ INIT 2: SEQ HOLD 3: SEQ STANDBY 4: SEQ PRE READY 5: SEQ READY 6: SEQ AUTOTUNING 7: SEQ RUN 8: SEQ AT ZERO SPD. 9: SEQ QUENCH 10: SEQ PROGRAM STOP 11: SEQ STOP 12: SEQ DELAY STOP 13: CURRENT DECAY 14: SEQ COAST STOP 15: SEQ ERROR		
START (C3)	68	OFF / ON
State of the Start/Run terminal.		
PROGRAM STOP	80	FALSE / TRUE
State of program stop (Terminal B8). When B8	B is at 24V, then PROGRAM STOP is FALSE.	
COAST STOP	525	FALSE / TRUE
State of coast stop (Terminal B9). When B9 is	at 24V, then COAST STOP is FALSE.	

C-114 Programming

MMI Menu Map

SETUP PARAMETERS

2 SETPOINT SUM 1

RATIO 1

RATIO 0

SIGN 1

SIGN 0

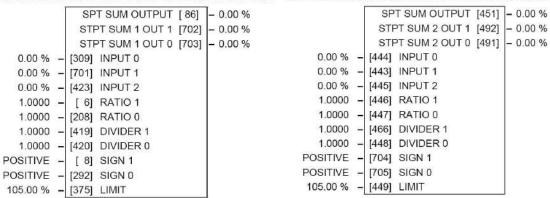
DIVIDER 1

DIVIDER 0

LIMIT INPUT 2

INPUT 1

INPUT 0


SETPOINT SUM

Use this menu to sum and scale up to three analog inputs to produce the SPT. SUM output.

INPUT 0 and INPUT 1 have individual ratio and divider scalers, and signs. The inputs have symmetrical limits set by LIMIT. INPUT 2 has no scaling or limits.

The output, after INPUT 0, INPUT 1 and INPUT 2 are summed, is also clamped by LIMIT before producing the SPT. SUM output.

FUNCTION BLOCKS\SETPOINT FUNCS\SETPOINT SUM\SETPOINT SUM 1 FUNCTION BLOCKS\SETPOINT FUNCS\SETPOINT SUM\SETPOINT SUM 2

MMI Menu Map

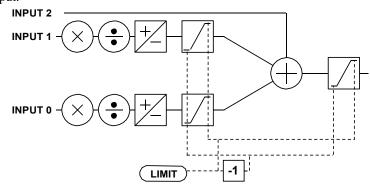
1 FUNCTION BLOCKS

2 SETPOINT FUNCS

3 SETPOINT SUM

4 SETPOINT SUM 1

SPT SUM OUTPUT STPT SUM 1 OUT 1 STPT SUM 1 OUT 0


SETPOINT SUM

Parameter	Tag	Range
INPUT 0	309	-300.00 to 300.00 %
Input 0 value.		
INPUT 1	701	-300.00 to 300.00 %
Input 1 value.		
INPUT 2	423	-300.00 to 300.00 %
Input 2 value.		
RATIO 1	6	-3.0000 to 3.0000
Multiplier term for INPUT 1.		
RATIO 0	208	-3.0000 to 3.0000
Multiplier term for INPUT 0.		
DIVIDER 1	419	-3.0000 to 3.0000
Divider scaling for INPUT 1. Dividing by	0 (zero) results in a zero output.	
DIVIDER 0	420	-3.0000 to 3.0000
Divider scaling for INPUT 0. Dividing by	0 (zero) results in a zero output.	
SIGN 1	8	NEGATIVE / POSITIVE
Polarity for INPUT 1.		
SIGN 0	292	NEGATIVE / POSITIVE
Polarity for INPUT 0.		

SETPOINT SUM

Parameter	Tag	Range
LIMIT	375	0.00 to 200.00 %

The Setpoint Sum programmable limit is symmetrical and has the range 0.00% to 200.00%. The limit is applied both to the intermediate results of the RATIO calculation and the total output.

SPT SUM OUTPUT 86 -.xx %

The sum of input 0, 1 and 2 after the limit clamp.

STPT SUM 1 OUT 1 702 -.xx %

An additional output provided to gain access to Input 1 channel sub-calculations. The result of (INPUT 1 x RATIO 1) / DIVIDER 1 clamped to within \pm LIMIT.

STPT SUM 1 OUT 0 703 -.xx %

An additional output provided to gain access to Input 0 channel sub-calculations. The result of (INPUT 0 x RATIO 0) / DIVIDER 0 clamped to within \pm LIMIT.

MMI Menu Map

FUNCTION BLOCKS

2 SETPOINT FUNCS

3 SETPOINT SUM

4 SETPOINT SUM 2

INPUT 0

INPUT 1

INPUT 2

RATIO 1 RATIO 0

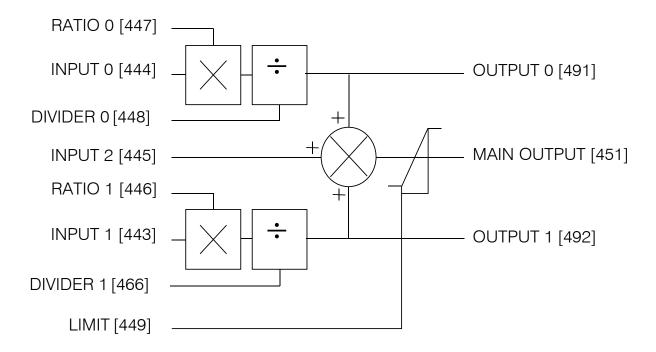
DIVIDER 1

DIVIDER 0

SIGN 1

SIGN 0

LIMIT


SPT SUM OUTPUT

STPT SUM 2 OUT 1

STPT SUM 2 OUT 0

C-116 Programming

Functional Description

MMI Menu Map 1 SETUP PARAMETERS 2 SPEED LOOP SPD.PROP.GAIN SPD.INT.TIME INT. DEFEAT PRESET TORQUE PRESET T SCALE SPEED FBK SELECT ENCODER SIGN SPD.FBK.FILTER >> ADVANCED

MMI Menu Map SETUP PARAMETERS

SETPOINTS

SPEED LOOP

3 SETPOINTS

SETPOINT 1 SIGN 2 (A3)

RATIO 2 (A3)

SETPOINT 2 (A3)

SETPOINT 3

SETPOINT 4

MAX DEMAND

MIN DEMAND

SPEED LOOP

Use this block to tune the speed loop PI to produce a current demand.

This function block has five main functions:

1. Combining the 4 speed setpoints into a single speed setpoint.

Note that the speed demand is created from the combined speed setpoints and modified by any prevailing stop condition according to the STOPRATES function block settings.

2. Selection of the speed feedback method.

ZERO SPD OFFSET from the CALIBRATION function block is applied to the selected speed feedback to null out any remaining feedback at zero actual speed.

3. Implementation of the PI speed controller.

SPEED DEMAND is summed algebraically with SPEED FEEDBACK to produce SPEED ERROR. When the drive is enabled, SPEED ERROR is controlled by the PI loop. The resulting current demand signal is routed to the CURRENT LOOP function block and to the ADVANCED::ZERO SPD. QUENCH sub-menu.

The PI output is accessible via Tag No. 356, TOTAL I DMD. This point is before the I Limit clamps and the summing of the additional current demand. (This tag is not visible on the MMI).

4. Speed controller gain and integral time constant profiling with speed.

The gains change when the motor speed feedback reaches the thresholds set by SPD BRK 1 (LOW) and SPD BRK 2 (HIGH).

- At or below SPD BRK 1 (LOW), the speed loop uses the PROP. GAIN and INT. TIME CONST. values as its PI loop gains.
- Between SPD BRK 1 (LOW) and SPD BRK 2 (HIGH), profiling occurs and the speed loop gains are determined by another parameter value (according to the selection of the MODE parameter).
- Above SPD BRK 2 (HIGH), the SPD. PROP. GAIN and SPD. INT. TIME settings are used.

MODE selects the parameter for profiling the speed loop PI gains when the motor speed is between the two speed breakpoints.

FUNCTION BLOCKS\MOTOR CONTROL\SPEED LOOP

SPEED SETPOINT [63] – UNFIL.SPD.ERROR [64] – SETPOINT 2 (A3) [290] – 10.00 – [14] SPD PROP GAIN	0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
SPEED DEMAND [89] – UNFIL.SPD.FBK [62] – SPEED SETPOINT [63] – UNFIL.SPD.ERROR [64] – SETPOINT 2 (A3) [290] – 10.00 – [14] SPD PROP GAIN	0.00 % 0.00 % 0.00 % 0.00 %
UNFIL.SPD.FBK [62] – SPEED SETPOINT [63] – UNFIL.SPD.ERROR [64] – SETPOINT 2 (A3) [290] – 10.00 – [14] SPD PROP GAIN	0.00 % 0.00 % 0.00 %
SPEED SETPOINT [63] – UNFIL.SPD.ERROR [64] – SETPOINT 2 (A3) [290] – 10.00 – [14] SPD PROP GAIN	0.00 %
UNFIL.SPD.ERROR [64] – SETPOINT 2 (A3) [290] – 10.00 – [14] SPD PROP GAIN	0.00 %
SETPOINT 2 (A3) [290] - 10.00 - [14] SPD PROP GAIN	
10.00 - [14] SPD PROP GAIN	0.00 %
0 FOO - LAST COD INT TIME	
0.500 s - [13] SPD INT TIME	
OFF - [202] INT. DEFEAT	
0.000 - [547] SPD.FBK.FILTER	
0.00 % - [289] SETPOINT 1	
POSITIVE - [9] SIGN 2 (A3)	
1.0000 - [7] RATIO 2 (A3)	
0.00 % - [291] SETPOINT 3	
0.00 % - [41] SETPOINT 4	
105.00 % - [357] MAX DEMAND	
-105.00 % - [358] MIN DEMAND	
0.00 % - [595] PRESET TORQUE	
100.00 % - [604] PRESETT SCALE	
DISABLED - [268] MODE	
1.00 % - [269] SPD BRK1 (LOW)	
5.00 % - [270] SPD BRK2 (HIGH)	
5.00 - [271] PROP. GAIN	
0.500 s - [272] INT TIME CONST	
1.0000 - [274] I GAIN IN RAMP	
0.50 % - [284] ZERO SPD. LEVEL	
1.50 % - [285] ZERO IAD LEVEL	
ARM VOLTS FBK - [47] SPEED FBK SELECT	

C-118 Programming

MMI Menu Map SETUP PARAMETERS

- 2 SPEED LOOP
- 3 ADVANCED
- >> ADAPTION
 I GAIN IN RAMP
- >> ZERO SPD. QUENCH

MMI Menu Map

- 1 SETUP PARAMETERS
- SPEED LOOP
- ADVANCED
- 4 ADAPTION

MODE

SPD BRK 1 (LOW) SPD BRK 2 (HIGH)

PROP. GAIN

INT.TIME. CONST

MMI Menu Map

- 1 SETUP PARAMETERS
- 2 SPEED LOOP
- 3 ADVANCED
- ZERO SPD. QUENCH

ZERO IAD LEVEL

5. Zero speed/current disabling of thyristor firing

The current loop is disabled when SPEED DEMAND, SPEED FEEDBACK and CURRENT DEMAND have all dropped to the threshold levels set by ZERO SPD. LEVEL and ZERO IAD LEVEL.

This is similar to Standstill logic (it stops making current but the contactor stays energised) except that the speed loop remains enabled and this will cause the current loop to unquench very quickly.

SPEED LOOP

Parameter	Tag	Range
SPD PROP GAIN	14	0.00 to 200.00
Speed loop PI proportional gain adj	justment.	
SPD INT TIME	13	0.001 to 30.000 s
Speed loop PI integral gain adjustm	ient.	
INT. DEFEAT	202	OFF / ON
When ON it inhibits the integral part	rt of the speed loop PI control to give	proportional only control.
SPEED FBK FILTER	547	0.000 to 1.000
(SPD.FBK.FILTER)		

A simple filter function that is applied to speed feedback to reduce ripple caused by low line count encoders and noisy tachos. A value of 0 disables the filter action, and 1.00 is the maximum value. A typical value would be between 0.5 and 0.75.

INCREASING THE FILTER VALUE MAY MAKE THE SPEED LOOP UNSTABLE.

The filter time constant τ in milliseconds can be calculated from the following equation:

$$\tau = \frac{3.3}{Log_e \left(\frac{1}{\alpha}\right)}$$

Where α is the value of SPD FBK FILTER. A value of 0.5 equates to a filter time of 4.8ms, 0.8 to 14.7ms, and 0.9 to 31.2ms.

SETPOINT 1	289	-105.00 to 105.00 %		
Speed Setpoint 1 (Default Setpoint Sum 1 O/P).				
SIGN 2 (A3)	9	NEGATIVE / POSITIVE		
Speed Setpoint 2 Sign.				

Parameter	Tag	Range
RATIO 2 (A3) Speed Setpoint 2 Ratio.	7	-3.0000 to 3.0000
SETPOINT 3 Speed Setpoint 3 (Defau	291 lt Ramp O/P).	-105.00 to 105.00 %
SETPOINT 4 Speed Setpoint 4.	41	-105.00 to 105.00 %
MAX DEMAND	357	0.00 to 105.00 %
Sets the maximum input	to the speed loop. It is clamped at 10	5% to allow for overshoot in the external loops.
MIN DEMAND	358	-105.00 to 105.00 %
Sets the minimum input	to the speed loop.	
PRESET TORQUE	595	-200.00 to 200.00 %
m		
The PRESET TORQUE	is pre-loaded into the speed loop inte	gral store as the speed loop in enabled. This is scaled by PRESET T SCALE.
This may be used to pre-		levator/hoist applications to prevent the load from falling back when the brake is
This may be used to pre- released. PRESET T SC	load the output of the speed loop in e	levator/hoist applications to prevent the load from falling back when the brake is
This may be used to pre- released. PRESET T SC PRESET T SCALE	load the output of the speed loop in e ALE may be used in situations where	levator/hoist applications to prevent the load from falling back when the brake is the load may vary.
This may be used to pre- released. PRESET T SC PRESET T SCALE Scaler for PRESET TOP	load the output of the speed loop in e ALE may be used in situations where	levator/hoist applications to prevent the load from falling back when the brake is the load may vary.
This may be used to pre-	load the output of the speed loop in eALE may be used in situations where 604 RQUE. 268	levator/hoist applications to prevent the load from falling back when the brake is the load may vary. -200.00 to 200.00 %
This may be used to pre- released. PRESET T SC PRESET T SCALE Scaler for PRESET TOP MODE	cload the output of the speed loop in eALE may be used in situations where 604 RQUE. 268 coint input signal. 0 : DISABLED 1 : SPD FBK DEP 2 : SPD ERR DEP Speed I	levator/hoist applications to prevent the load from falling back when the brake is the load may vary. -200.00 to 200.00 %
This may be used to pre- released. PRESET T SC PRESET T SCALE Scaler for PRESET TOF MODE Selects the speed breakp	cload the output of the speed loop in eALE may be used in situations where 604 RQUE. 268 coint input signal. 0 : DISABLED 1 : SPD FBK DEP 2 : SPD ERR DEP Speed I	levator/hoist applications to prevent the load from falling back when the brake is the load may vary. -200.00 to 200.00 % See below Geedback Dependent Error Dependent
This may be used to pre- released. PRESET T SC PRESET T SCALE Scaler for PRESET TOP MODE	cload the output of the speed loop in eALE may be used in situations where 604 RQUE. 268 Point input signal. 0 : DISABLED 1 : SPD FBK DEP Speed IN Spe	levator/hoist applications to prevent the load from falling back when the brake is the load may vary. -200.00 to 200.00 % See below Geedback Dependent Error Dependent Demand Dependent
This may be used to pre- released. PRESET T SC PRESET T SCALE Scaler for PRESET TOF MODE Selects the speed breakp	cload the output of the speed loop in eALE may be used in situations where 604 RQUE. 268 Point input signal. 0 : DISABLED 1 : SPD FBK DEP Speed IN Spe	levator/hoist applications to prevent the load from falling back when the brake is the load may vary. -200.00 to 200.00 % See below Geedback Dependent Error Dependent Demand Dependent

C-120 Programming

SPEED LOOP				
Parameter	Tag	Range		
PROP. GAIN	271	0.00 to 200.00		
Proportional gain used below SPD BR	K 1 (LOW)			
INT. TIME CONST.	272	0.001 to 30.000 s		
Integral time constant used below SPD	BRK 1 (LOW)			
I GAIN IN RAMP	274	0.0000 to 2.0000		
		Γag No. 113) is TRUE, the integral gain from ADAPTION is switched ral wind-up while the drive is ramping (particularly high inertia loads).		
ZERO SPD. LEVEL	284	0.00 to 200.00 %		
Sets the threshold of SPEED DEMAN	D and SPEED FEEDBACK for suspe	ending the current output.		
ZERO IAD LEVEL	285	0.00 to 200.00 %		
Sets the current demand threshold for s	suspending the current output.			
SPEED ERROR FILTERED	297	xx %		
Refer to Chapter 6: "The Keypad" - Th	e Keypad Menus (DIAGNOSTICS).			
SPEED LOOP O/P	549	xx %		
Refer to Chapter 6: "The Keypad" - Th	e Keypad Menus (DIAGNOSTICS).			
SPEED DEMAND	89	xx %		
Refer to Chapter 6: "The Keypad" - The Keypad Menus (DIAGNOSTICS).				
UNFIL.SPD.FBK	62	xx %		
Refer to Chapter 6: "The Keypad" - Th	e Keypad Menus (DIAGNOSTICS).			
SPEED SETPOINT	63	xx %		
Refer to Chapter 6: "The Keypad" - Th	e Keypad Menus (DIAGNOSTICS).			
UNFIL.SPD.ERROR	64	xx %		
Refer to Chapter 6: "The Keypad" - Th	e Keypad Menus (DIAGNOSTICS).			
SETPOINT 2 (A3)	290	xx %		
Speed Setpoint 2 - Fixed (non-configur	rable) setpoint scanned synchronously	y with the current loop		

SPEED LOOP

Parameter Tag Range

SPEED FBK SELECT 47 See below

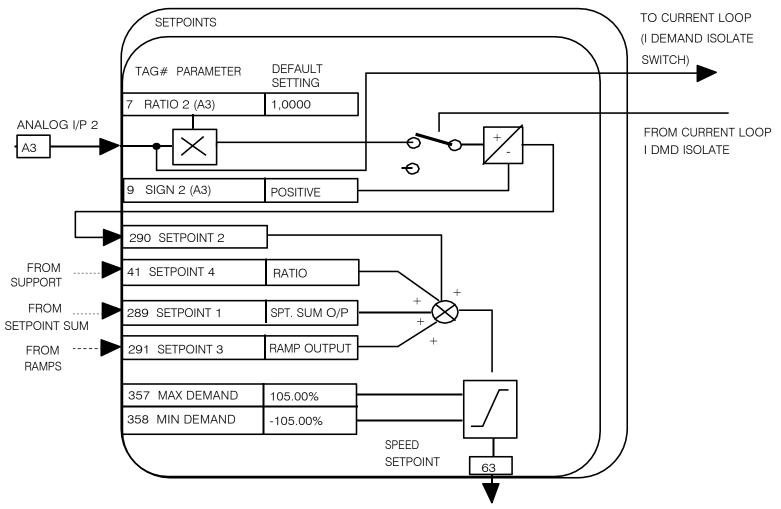
Determines the source of the speed feedback signal. The default, ARM VOLTS FBK, uses internal circuitry to derive the speed feedback. The other selections require the appropriate external device to provide the feedback signal.

- 0 : ARM VOLTS FBK
- 1: ANALOG TACH
- 2: ENCODER
- 3: ENCODER/ANALOG for DC900P Drives use

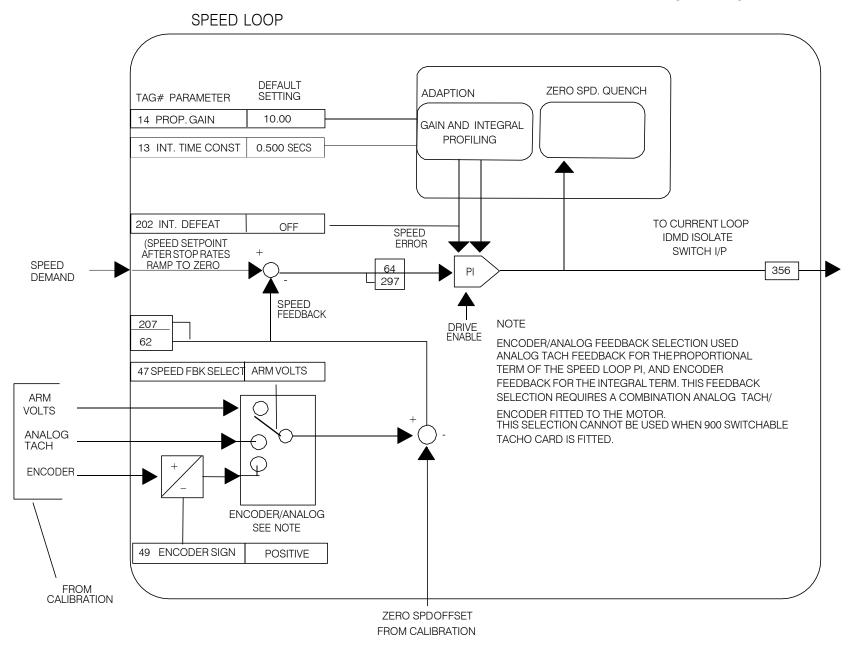
Functional Description

Speed Loop PI with Current Demand Isolate

The speed loop output is still valid (active) with the I DMD. ISOLATE parameter enabled.


NOTE

- 1 The speed loop is reset by unquenching the speed loop/current loop.
- 2 I DMD. ISOLATE is overridden by Program Stop (B8) or Normal Stop (C3).
- The speed loop PI holds the integral term as soon as the PI output reaches current limit. This is true even in Current Demand Isolate mode where it may interfere depending on the way the speed PI is used. This feature is currently not suppressible.


SPEED LOOP Parameter Tag Range

105% Speed Demands

The speed demand clamping allows the speed setpoint to reach 105%. This applies only to the final summing junction immediately before the speed loop and also to the Setpoint Sum 1 output. Individual speed setpoints are still clamped to 100%.

TO STOP RATES (PROGRAM STOP AND NORMAL STOP RAMPS TO ZERO SPEED

C-124 Programming

SRAMP MMI Menu Map FUNCTION BLOCKS\SETPOINT FUNCS\SRAMP This function block limits the rate of change of an input by limiting the acceleration and SETUP PARAMETERS SRAMP OUTPUT [589] - 0.00 % the jerk (rate of change of acceleration). ACCEL OUTPUT [588] - 0.00 % 2 SRAMP AT SPEED [587] - FALSE INPUT 0.00 % - [574] INPUT 0 - [575] RATE SELECT RATE SELECT TRUE - [582] AUTO RESET RATE SET 0 FALSE - [583] EXTERNAL RESET RATE SET 1 0.00 % - [584] RESET VALUE AUTO RESET FALSE - [585] QUENCH EXTERNAL RESET 1.00 % -[586] AT SPEED LEVEL RESET VALUE 60.00 % [576] ACCEL 0 QUENCH 60.00 % [577] DECEL 0 AT SPEED LEVEL 20.00 % -[578] ACCEL 0 JERK 1 AT SPEED 20.00 % [611] ACCEL 0 JERK 2 20.00 % - [596] DECEL 0 JERK 1 ACCEL OUTPUT 20.00 % -[613] DECEL 0 JERK 2 SRAMP OUTPUT 30.00 % -[579] ACCEL 1 **MMI Menu Map** 30.00 % - [580] DECEL 1 SETUP PARAMETERS 20.00 % -[581] ACCEL 1 JERK 1 20.00 % - [612] ACCEL 1 JERK 2 2 SRAMP 20.00 % - [597] DECEL 1 JERK 1 20.00 % - [614] DECEL 1 JERK 2 RATE SET 0 ACCEL 0 **SRAMP** DECEL 0 Parameter Tag Range ACCEL 0 JERK 1 ACCEL 0 JERK 2 574 **INPUT** -100.00 to 100.00 % DECEL 0 JERK 1 Input value. DECEL 0 JERK 2 575 **RATE SELECT** 0 to 1 **MMI Menu Map** Selects between one of two parameter sets. This allows you to have two operating modes (RATE SET 0 or RATE SET 1) with independent ramp SETUP PARAMETERS parameters. 2 SRAMP **AUTO RESET** 582 **FALSE / TRUE** 3 RATE SET 1 The ramp is reset automatically when the drive is enabled if set to TRUE. ACCEL 1 **EXTERNAL RESET** 583 **FALSE / TRUE** DECEL 1 Resets the ramp output. ACCEL 1 JERK 1 ACCEL 1 JERK 2 DECEL 1 JERK 1 DECEL 1 JERK 2

SRAMP		
Parameter	Tag	Range
RESET VALUE	584	-100.00 to 100.00 %
	RUE also used as initial value on start up	. If this is linked to speed feedback, the initial ramp output will be set
QUENCH	585	FALSE / TRUE
If TRUE forces the ramp input to ze	ero.	
AT SPEED LEVEL	586	0.00 to 100.00 %
Threshold for AT SPEED diagnosti	c output.	
ACCEL 0	576	0.00 to 100.00 %
	t per second ² . i.e. 75.00% means that the eleration will be $1.25 * 75.0\% = 0.9375$ m	maximum acceleration will be 75.00% per second ² if the full speed of s^2 .
DECEL 0	577	0.00 to 100.00 %
Deceleration rate, only active if SY	MMETRIC =TRUE.	
ACCEL 0 JERK 1	578	0.00 to 100.00 %
acceleration will be 1.25 * 50.0% = If SYMMETRIC = TRUE then this		
ACCEL 0 JERK 2	611	0.00 to 100.00 %
Rate of change of acceleration in un	aits of percent per second ³ for segment 2.	Only applicable if SYMMETRIC = FALSE.
DECEL 0 JERK 1	596	0.00 to 100.00 %
Rate of change of acceleration in un	its of percent per second ³ for segment 3.	Only applicable if SYMMETRIC = FALSE.
DECEL 0 JERK 2	613	0.00 to 100.00 %
Rate of change of acceleration in un	its of percent per second ³ for segment 4.	Only applicable if SYMMETRIC = FALSE.
ACCEL 1	579	0.00 to 100.00 %
Refer to ACCEL 0.		
DECEL 1	580	0.00 to 100.00 %
Refer to DECEL 0.		
ACCEL 1 JERK 1	581	0.00 to 100.00 %
Refer to ACCEL 0 JERK 1.		

C-126 Programming

SRAMP		
Parameter	Tag	Range
ACCEL 1 JERK 2	612	0.00 to 100.00 %
Refer to ACCEL 0 JERK 2.		
DECEL 1 JERK 1	597	0.00 to 100.00 %
Refer to DECEL 0 JERK 1.		
DECEL 1 JERK 2	614	0.00 to 100.00 %
Refer to DECEL 0 JERK 2.		
SRAMP OUTPUT	589	xx %
Diagnostic, ramp output.		
ACCEL OUTPUT	588	xx %
Acceleration diagnostic.		
AT SPEED	587	FALSE / TRUE
Diagnostic output indicating the Abs (input - output) is less than AT SPEEDLI	EVEL.

Useful Equations

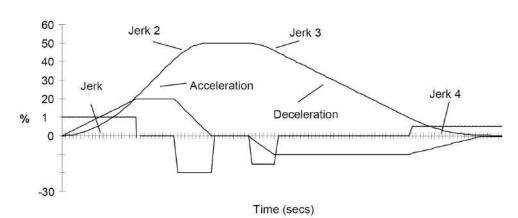
NOTE

These only hold true if Jerk = Jerk2 for acceleration or Jerk 3 = Jerk 4 for deceleration.

V is the maximum speed the drive must reach. In % / sec

A is the maximum allowable acceleration in %/sec²

J is the maximum allowable value for jerk, in %/sec³


The time needed to stop or accelerate is:

$$t = \frac{V}{A} + \frac{A}{J} [Seconds]$$

as the speed is symmetrical the average speed is V/2, therefore the stopping / acceleration distance can be calculated.

$$s = \frac{V}{2} \left| \begin{array}{c} \underline{V} + \underline{A} \\ A \end{array} \right| \quad [Meters]$$

S-Ramp

Example acceleration graph for a velocity 60 %/s maximum Acceleration of 20 %/s² and a jerk of 10 %/s³

MMI Menu Map SETUP PARAMETERS

2 STANDSTILL

STANDSTILL LOGIC ZERO THRESHOLD

MMI Menu Map

1 FUNCTION BLOCKS

2 SEQ & REF

3 STANDSTILL ZERO SETPOINT

MMI Menu Map

DIAGNOSTICS

AT ZERO SPEED
AT ZERO SETPOINT
AT STANDSTILL

STANDSTILL

Set a ZERO THRESHOLD defining when the speed setpoint is at zero to inhibit motor rotation.

The inputs to this block are SPEED FEEDBACK from the SPEED LOOP function block and SPEED SETPOINT from setpoints.

The outputs are AT ZERO SPEED, AT STANDSTILL, and AT ZERO SETPOINT. AT ZERO SPEED is connected to DIGOUT 1 (B5) in the default configuration. A "not at standstill" signal is sent to the drive enable logic.

When SPEED FEEDBACK is less than ZERO THRESHOLD, AT ZERO SPEED is TRUE.

When SPEED SETPOINT is less than ZERO THRESHOLD, AT ZERO SETPOINT is TRUE.

When both AT ZERO SPEED and AT ZERO SETPOINT are TRUE, AT STANDSTILL is TRUE signalling the motor has stopped.

If AT STANDSTILL is TRUE and STANDSTILL LOGIC is ENABLED, then the speed and current loops are quenched. The SCR (Silicon Controlled Rectifier)/thyristor firing circuits are disabled, the main contactor remains energised and the RUN LED stays on when the drive is at standstill. The drive remains in this state until standstill drops out. That is, when the speed setpoint or speed feedback rise above the zero threshold.

STANDSTILL LOGIC is useful in maintaining absolute zero speed and aids in preventing gearbox wear due to "chattering".

However, it can cause problems in web handling applications using tension feedback: at zero speed, the SCR/thyristors turn off allowing the web tension to pull the driven roll in reverse. When the drive no longer senses it is at zero speed, the SCR/thyristors turn back on causing the motor to move forward and regulate tension. An oscillation condition can result as the drives SCR/thyristors turn on and off trying to maintain a fixed position.

STANDSTILL

Parameter	Tag	Range
ZERO SETPOINT	699	-300.00 to 300.00 %

The input to the standstill function. By default this is connected to the speed demand parameter from the speed loop function block.

STANDSTILL LOGIC 11 DISABLED / ENABLED

If ENABLED, the Drive is quenched (although the contactor remains in) when the Speed Feedback and Speed Setpoint values are less than ZERO THRESHOLD.

ZERO THRESHOLD 12 0.00 to 100.00 %

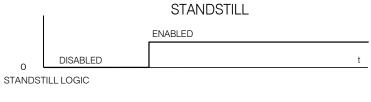
Threshold level which defines zero setpoint and zero speed diagnostic outputs and also controls the zero speed relay output.

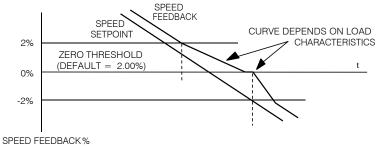
AT ZERO SETPOINT 78 FALSE / TRUE

Logic output, TRUE when INPUT is below ZERO THRESHOLD. There is hysteresis of 0.5% on this test.

AT ZERO SPEED 77 FALSE / TRUE

C-128 Programming

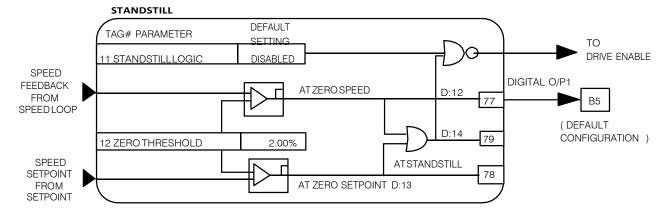

STANDSTILL


Parameter Tag Range

Logic output, TRUE when speed feedback is below ZERO THRESHOLD. There is hysteresis of 0.5% on this test. The speed feedback parameter is internally connected to the PERCENT RPM parameter in the FEEDBACKS block.

AT STANDSTILL 79 FALSE / TRUE

Logic output that is TRUE when standstill is detected.



DRIVE ENABLE

Programming C-129

MMI Menu Map

SETUP PARAMETERS

2 STOP RATES

STOP TIME
STOP LIMIT
CONTACTOR DELAY
CURR DECAY RATE
PROG STOP TIME
PROG STOP LIMIT
PROG STOP I LIM
STOP ZERO SPEED

STOP RATES

These parameters are used by a regenerative drive when stopping with Normal Stop or Program Stop.

The stopping methods of the drive are described in more detail in Chapter 4: "Operating the Drive"-Starting and Stopping Methods.

The internal inputs to this block are SPEED SETPOINT and SPEED FEEDBACK from the SPEED LOOP function block, the Run signal from terminal C3, and PROGRAM STOP from terminal B8.

The internal outputs are SPEED DEMAND to the speed loop, PROG STOP I LIM to the current loop, and signals to the coast stop and drive enable logic.

FUNCTION BLOCKS\SEQ & REF\STOP RATES

			STOP TIME
60.0 s	_	[217]	STOP LIMIT
1.0 s	-	[302]	CONTACTOR DELAY
0.00	-	[594]	CONTACTOR DELAY CURR DECAY RATE
0.1 s	-	[26]	PROG STOP TIME
60.0 s	-	[216]	PROG STOP LIMIT
100.00 %	_	[91]	PROG STOP I LIM
2.00 %	-	[29]	STOP ZERO SPEED

Normal Stop

A Normal Stop occurs when the Run signal is removed from terminal C3. It ramps the speed demand to zero at a rate set by STOP TIME.

- Non-regenerative drives can stop no faster than the coast stop rate.
- Regenerative drives use STOP TIME to set the duration of the stop.

After the stop, the contactor de-energises and the drive disables.

The STOP LIMIT timer starts when C3 goes to 0V (the Run signal is removed). If the drive speed has not reached STOP ZERO SPEED within the STOP LIMIT time, the contactor de-energises and the drive disables.

During Normal Stops, after the motor reaches zero speed, CONTACTOR DELAY delays the de-energising of the contactor. When STOP ZERO SPEED is set above 0.25% and the CURRENT DECAY RATE is not zero, the drive disables during the contactor delay. Otherwise the drive disables after the contactor delay. This is useful when using the Jog function to prevent multiple operations of the contactor. CONTACTOR DELAY is overridden when terminal C5 (Enable Input) is at 0V.

Program Stop

PROGRAM STOP provides a controlled fast stop for regenerative drives. The stop time is set by PROG STOP TIME. This timer starts once terminal B8 (Program Stop) goes to 0V. When the drive reaches STOP ZERO SPEED, the contactor de-energises and the drive disables. PROG STOP LIMIT sets the maximum time the Program Stop can take before the contactor de-energises and the drive disables.

PROG STOP I LIM sets the current limit in the current loop during a Program Stop. Other current limits can override it.

STOP RATES		
Parameter	Tag	Range
STOP TIME	27	0.1 to 600.0 s
Time to reach zero speed from 100%	6 set speed in normal stop mode (terminal	C3 = 0V).
STOP LIMIT	217	0.0 to 600.0 s
The maximum time a controlled stop when terminal $C3 = 0V$.	o can take in a Normal Stop (regenerative b	oreaking) before the drive will coast to stop. The timer is triggered
CONTACTOR DELAY	302	0.1 to 600.0 s
This defines the time the contactor s delay.	tays energised for after the STOP ZERO S	PEED limit is reached. Maintain zero speed during contactor
CURR DECAY RATE	594	0.00 to 200.00 %/s
This is the rate at which the current is	s quenched when the current loop is disab	led.
A value of 100% will ramp the current A value of 50% will ramp the current		
PROG STOP TIME	26	0.1 to 600.0 s
Time to reach zero speed from 100%	% set speed in Program Stop mode (B8 = 0	V).
PROG STOP LIMIT	216	0.0 to 600.0 s
The maximum time a Program Stop triggered when terminal $B8 = 0V$.	(regenerative breaking) can take before the	e contactor is de-energised and the drive is disabled. The timer is
PROG STOP I LIM	91	0.00 to 200.00 %
Main current limit level (assuming c	eurrent limit not overridden by I Profile or	Inverse Time limits) when performing a Program Stop.
STOP ZERO SPEED	29	0.00 to 100.00 %
The threshold at which the CONTA	CTOR DELAY timer starts in Program Sto	op and Normal Stop modes. See also CONTACTOR DELAY above.

Functional Description

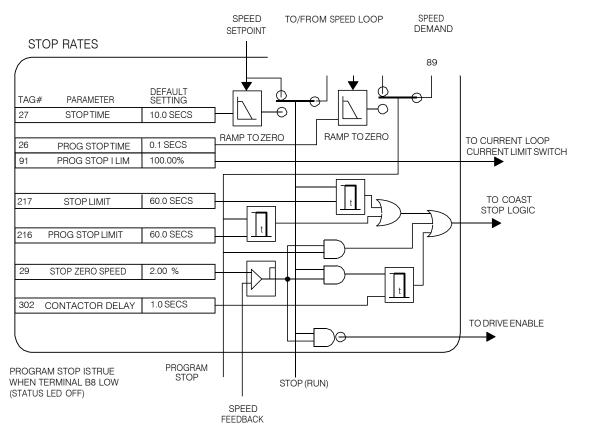
Stop Hierarchy

Coast Stop - Terminal B9

• Disables the drive and opens the contactor via the pilot output

Enable - Terminal C5

• Suspends and resets the Control Loops


Program Stop - Terminal B8

- Independent ramp time
- Stop Timer
- Independent Current Limit that may be higher than normal CurrentLimit
- Independent zero speed

Normal Run/Stop - Terminal C3

- Independent ramp time
- Contactor Delay

The Drive's reaction to commands is defined by a state machine. This determines which commands provide the demanded action, and in which sequence. Consequently, COAST STOP and PROGRAM STOP must be FALSE, i.e. the drive is not in Coast or Program mode, before a Run signal is applied otherwise the controller assumes a Stop mode and remains disabled. Refer to Chapter 4: "Operating the Drive" - Stopping Methods for descriptions of Coast Stop and Program Stop.

TEC OPTION

TEC OPTION IN 1 to TEC OPTION IN 5

MMI Menu Map
SERIAL LINKS

2 TEC OPTION

TEC OPTION TYPE
TEC OPTION IN 1
TEC OPTION IN 2
TEC OPTION IN 3
TEC OPTION IN 4
TEC OPTION IN 5
TEC OPTION FAULT
TEC OPTION VER
TEC OPTION OUT 1
TEC OPTION OUT 2

This function block is used to configure the inputs and outputs of the various Technology Options that can be fitted.

The Technology Option provides a communications interface for external control of the Drive.

Refer to the appropriate Technology Option Technical Manual supplied with the option for further details.

FUNCTION BLOCKS\COMMUNICATIONS\TEC OPTION TEC OPTION FAULT [506] - NONE TEC OPTION VER [507] - 0x0000 TEC OPTION OUT 1 [508] - 0 TEC OPTION OUT 2 [509] - 0 NONE - [500] TEC OPTION TYPE 0 - [501] TEC OPTION IN 1 0 - [502] TEC OPTION IN 2 0 - [503] TEC OPTION IN 3 0 - [504] TEC OPTION IN 4

- [505] TEC OPTION IN 5

-32768 to 32767

TEC OPTION			
Parameter		Tag	Range
TEC OPTION TYPE		500	See below
Selects the type of Techn	nology Option.		
	0: NONE 1: RS485 2: PROFIBUS 3: LINK 4: DEVICE NET 5: CAN OPEN 6: LONWORKS 7: CONTROLNET 8: MODBUS PLUS 9: ETHERNET	10: TYPE 10 11: TYPE 11 12: TYPE 12 13: TYPE 13 14: TYPE 14 15: TYPE 15	

The use of these input parameters depends upon the type of Technology Option fitted. Refer to the Technology Option Technical Manual.

501, 502, 503, 504, 505

C-134 Programming

TEC OPTION						
Parameter		Tag	Range			
TEC OPTION FAULT		506	See below			
The fault state of the Tec	hnology Option.					
	0: NONE 1: PARAMETER 2: TYPE MISMATCH 3: SELF TEST 4: HARDWARE 5: MISSING	no faults parameter out-of-range TYPE parameter mismatch hardware fault - internal hardware fault - external no option fitted				
If the VERSION NUMB DC900P Drives.	ER error message is displaye	d, the Technology Option is using softw	rare that doesn't fully support the drive; refer to			
TEC OPTION VER		507	0x0000 to 0xFFFF			
The version of the Technology Option. If no option is fitted then the version is reset to zero.						
TEC OPTION OUT 1 t	TEC OPTION OUT 1 to TEC OPTION OUT 2 508, 509 – .					
The use of these output parameters depends upon the type of Technology Option fitted. Refer to the Technology Option Technical Manual.						

MMI Menu Map

SETUP PARAMETERS

2 SPECIAL BLOCKS

3 TORQUE CALC.

TORQUE DEMAND
TENSION ENABLE
OVER WIND

MMI Menu Map

SYSTEM

2 CONFIGURE I/O

3 BLOCK DIAGRAM

POS. I CLAMP NEG. I CLAMP

TORQUE CALC.

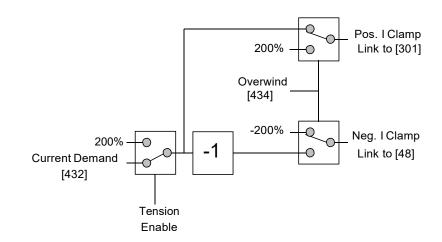
This block switches the drive between Speed and Tension mode. It also switches the current limits as required for over and under winding.

FUNCTION BLOCKS\WINDER\TORQUE CALC. POS. I CLAMP [707] - 0.00 V NEG. I CLAMP [708] - 0.00 V 0.00 % - [432] TORQUE DEMAND TRUE - [433] TENSION ENABLE TRUE - [434] OVER WIND

TORQUE CALC.

Parameter	Tag	Range
TORQUE DEMAND	432	-200.00 to 200.00 %
This is the TOPOLIE CALC function	on blockinnut	

This is the TORQUE CALC function block input.


TENSION ENABLE 433 DISABLED / ENABLED

When TENSION ENABLE is ENABLED, it is set by the TORQUE DEMAND signal, tag 432. When DISABLED, it is set by the default current limit. Switch using a free digital input.

OVER WIND 434 DISABLED / ENABLED

Reverses the sign of the output clamps for over/under winding. Switch using a free digital input.

Negative current clamp

C-136 Programming

MMI Menu Map

- 1 FUNCTION BLOCKS
- 2 MISCELLANEOUS
- 3 VALUE FUNC
- 4 VALUE FUNC 1
- 4 VALUE FUNC 2
- 4 VALUE FUNC 3
- 4 VALUE FUNC 4
- 4 VALUE FUNC 5
- 4 VALUE FUNC 6
- 4 VALUE FUNC 7
- 4 VALUE FUNC 8
- 4 VALUE FUNC 9
- 4 VALUE FUNC 10

INPUT A

INPUT B

INPUT C

TYPE

OUTPUT

VALUE FUNC

The value function blocks can be configured to perform one of a number of functions upon a fixed number of inputs.

Boolean inputs and outputs are

Outputs:

FALSE = 0.00TRUE = 0.01

Inputs:

-0.005 < x < 0.005 = FALSE, Else TRUE

FUNCTION BLOCKS\MISCELLANEOUS\VALUE FUNC\VALUE FUNC 1

		OUTPUT	[834]	- 0.00
0.00	[830]	INPUT A		
0.00 -	[831]	INPUT B		
0.00 -	[832]	INPUT C		
IF(C) -A	[833]	TYPE		

FUNCTION BLOCKS\MISCELLANEOUS\VALUE FUNC\VALUE FUNC 3

		OUTPUT	[844]	- 0.00
0.00 -	[840]	INPUT A		
0.00	[841]	INPUT B		
0.00 -	[842]	INPUT C		
F(C) -A	[843]	TYPE		

FUNCTION BLOCKS\MISCELLANEOUS\VALUE FUNC\VALUE FUNC 5

		OUTPUT	[854]	- 0.00
0.00 -	[850]	INPUT A		
0.00	[851]	INPUT B		
0.00	[852]	INPUT C		
IF(C) -A	[853]	TYPE		

FUNCTION BLOCKS\MISCELLANEOUS\VALUE FUNC\VALUE FUNC 7

		OUTPUT	[864]	- 0.00
0.00 -	[860]	INPUT A		
0.00 -	[861]	INPUT B		
0.00 -	[862]	INPUT C		
IF(C) -A -	[863]	TYPE		

FUNCTION BLOCKS\MISCELLANEOUS\VALUE FUNC\VALUE FUNC 9

		OUTPUT	[874]	0.00
0.00 -	[870]	INPUT A		
0.00 -	[871]	INPUT B		
0.00 -	[872]	INPUT C		
IF(C) -A -				

FUNCTION BLOCKS\MISCELLANEOUS\VALUE FUNC\VALUE FUNC 2

	Ž.	OUTPUT	[839]	-0.00
0.00 -		INPUT A		
0.00 -	[836]	INPUT B		
0.00 -	[837]	INPUT C		
IF(C) -A -	[838]	TYPE		

FUNCTION BLOCKS\MISCELLANEOUS\VALUE FUNC\VALUE FUNC 4

		OUTPUT	[849]	-0.00
0.00 -	[845]	INPUT A		
0.00 -	[846]	INPUT B		
0.00 -	[847]	INPUT C		
IF(C) -A -	[848]	TYPE		

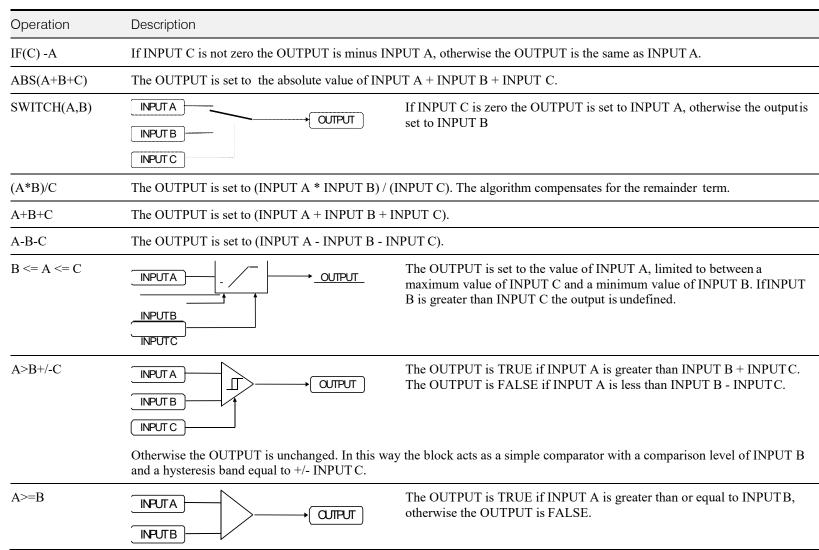
FUNCTION BLOCKS\MISCELLANEOUS\VALUE FUNC\VALUE FUNC 6

		OUTPUT	[859]	-0.00
0.00 -	[855]	INPUT A		
0.00 -	[856]	INPUT B		
0.00 -	[857]	INPUT C		
IF(C) -A -	[858]	TYPE		

FUNCTION BLOCKS\MISCELLANEOUS\VALUE FUNC\VALUE FUNC 8

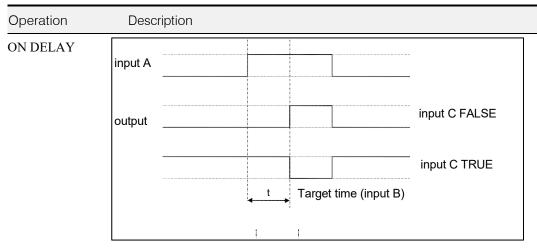
		OUTPUT	[869]	-0.00
0.00 -	[865]			
0.00 -	[866]	INPUT B		
0.00 -	[867]	INPUT C		
IF(C) -A -	[868]	TYPE		

FUNCTION BLOCKS\MISCELLANEOUS\VALUE FUNC\VALUE FUNC 10


	-	OUTPUT	[879]	-0.00
0.00 -	[875]	INPUT A		
0.00 -	[876]	INPUT B		
0.00 -	[877]	INPUT C		
IF(C) -A -	[878]	TYPE		

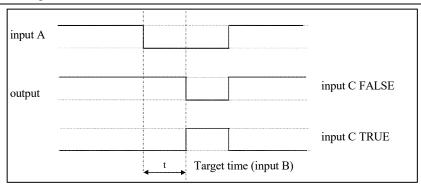
Parameter	Tag	Range
INPUT A	830, 835, 840, 845, 850, 855, 860, 865, 870, 875	-32768 to 32768
General purpose input.		
INPUT B	831, 836, 841, 846, 851, 856, 861, 866, 871, 876	-32768 to 32768
General purpose input.		
INPUT C	832, 837, 842, 847, 852, 857, 862, 867, 872, 877	-32768 to 32768
General purpose input.		
ТҮРЕ	833, 838, 843, 848, 853, 858, 863, 868, 873, 878	See below
The operation to be performed on the	three inputs to produce the output value.	
0: IF(C) -A	16: TIMER	31: PROFILE x^3
1: ABS(A+B+C)	17: MINIMUM PULSE	32: PROFILE x^4
2: SWITCH(A,B)	18: PULSE TRAIN	33: ON A>B, OFF A <c< td=""></c<>
3: (A*B)/C	19: WINDOW	34: (A+B) CLAMPED C
4: A+B+C	20: UP/DWN COUNTER	35: (A-B) CLAMPED C
5: A-B-C	21: (A*B)/C ROUND	36: (A*B) CLAMPED C
6: B<=A<=C	22: WINDOW NO HYST	37: (A/B) CLAMPED C
7: A>B+/-C	23: WIND A>=B,A<=C	38: A>=B:A, A<=C:0
8: A>=B	24: A<=B	39: (A * B) + C
9: ABS(A)>B+/-C	25: ((A*B)/100)+C	40: A * (B + C)
10: ABS(A) >= B	26: MIN(A,B,C)	41: A * (B - C)
11: A(1+B)	27: MAX(A,B,C)	42: A * (1+B/C)
12: IF(C) HOLD(A)	28: PROFILE SQRT	43: A * (1+(B * C))
13: BINARY DECODE	29: PROFILE LINEAR	44: MONOSTABLE HIGH
14: ON DELAY	30: PROFILE x^2	45: MONOSTABLE LOW
15: OFF DELAY		46: FILTER
OUTPUT	834, 839, 844, 849, 854, 859, 864, 869, 874, 879	xx

C-138 Programming


Functional Description

OUTPUT is generated from the inputs according to the operation type selected. The output is always limited to be within the range -32768.00 to +32767.00.

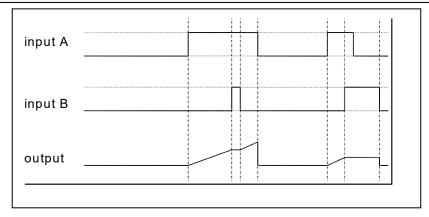
Description	ı				
[INPUTA] [INPUTB] INPUTC		→ OUTPUT	The OUTPUT is TRUE if the magnitude of INPUT A is greater than or equal to the magnitude of INPUT B - INPUT C.		
The OUTPUT is FALSE if the magnitude of INPUT A is less than the magnitude of INPUT B - INPUT C. Otherwise the OUTPUT is unchanged. In this way the block acts as a magnitude comparator with a comparison level of INPUT B and a hysteresis band equal to +/- INPUT C.					
[INPUTA]		OUTPUT	The OUTPUT is TRUE if the magnitude of INPUT A is greater than or equal to the magnitude of INPUT B, otherwise the OUTPUT is FALSE.		
The OUTPUT is set to INPUT A + (INPUT A * INPUT B / 100.00).					
If INPUT C is zero, the OUTPUT is set to INPUT A, otherwise the OUTPUT is unchanged.					
On powerin	g up the drive	, the output will b	e pre-loaded with the last saved value of input B.		
The OUTPUT is set according to which of the INPUTs are non-zero.					
INPUT C 0 0 0 0 ≠0 ≠0 ≠0 ≠0 ≠0	INPUT B 0 0 ≠0 ≠0 0 0 ≠0 ≠0 0 0 ≠0 ≠0 ≠0	INPUT A 0 ≠0 0 ≠0 0 ≠0 0 ≠0 0 ≠0 0 ≠0 0 ≠0	OUTPUT 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00		
	INPUTAL INPUTB INPUTC The OUTPUT is hysteresis b INPUTAL INPUTB The OUTPU If INPUT C On powerin The OUTPU INPUT C 0 0 0 0 0 ≠0 ≠0 ≠0 ≠0 ≠0 ≠0	The OUTPUT is set to IN INPUTA INPUTA INPUTB The OUTPUT is unchanged. In hysteresis band equal to the line of	The OUTPUT is set to INPUT A + (INPUT INPUT B) The OUTPUT is set to INPUT A + (INPUT INPUT C) The OUTPUT is set to INPUT A + (INPUT INPUT C) The OUTPUT is set to INPUT A + (INPUT INPUT C) The OUTPUT is set to INPUT A + (INPUT INPUT C) The OUTPUT is set to INPUT A + (INPUT INPUT C) The OUTPUT is set according to which of the OUTPUT is set to input will be the OUTPUT is set according to which of the OUTPUT C INPUT B INPUT A The OUTPUT is set according to which of the OUTPUT is set according to which of the OUTPUT is set according to which of the OUTPUT B INPUT A The OUTPUT is set according to which of the OUTPUT is set according to which of the OUTPUT B INPUT A The OUTPUT is set according to which of the OUTPUT is set to input		


C-140 Programming

A programmable delay between receiving and outputting a Boolean TRUE signal.

INPUT A becoming TRUE starts the delay timer. INPUT B sets the duration of the delay in seconds (1 = 1 second). At the end of the duration, OUTPUT becomes TRUE unless INPUT A has reverted to FALSE. Setting INPUT C to TRUE (\neq 0) inverts the output.

OFF DELAY

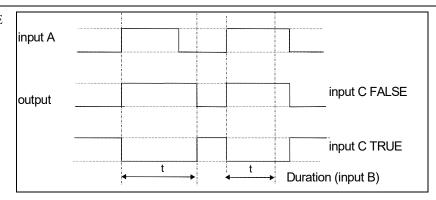


A programmable delay between receiving and outputting a Boolean FALSE signal.

INPUT A becoming FALSE starts the delay timer. INPUT B sets the duration of the delay in seconds (1 = 1 second). Setting INPUT C to TRUE ($\neq 0$) inverts the output. At the end of the duration, OUTPUT becomes FALSE unless INPUT A has reverted to TRUE.

Operation Description

TIMER

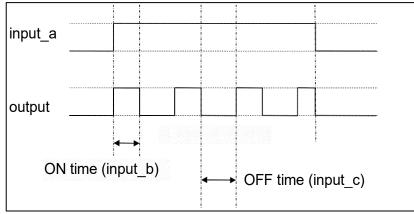


Times the period elapsed from when INPUT A is set TRUE and held TRUE, to when INPUT B becomes TRUE.

OUTPUT is the duration of the timer in seconds (1 = 1 second), starting from zero. If INPUT B is TRUE, the value for OUTPUT is held until INPUT B is released. If on release INPUT A is still TRUE, the timer will continue from the held value. Setting INPUT A and INPUT B to FALSE resets the timer.

INPUT C is not used.

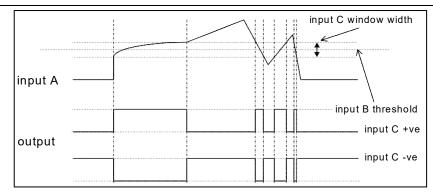
MINIMUM PULSE


Creates an output of adjustable minimum time when INPUT A is TRUE. (INPUT A is assumed to be a sequence of TRUE pulses and FALSE off periods.)

INPUT B sets the length of the minimum pulse required in seconds (1 = 1 second). INPUT C inverts the output when TRUE. The duration of the pulse is *at least* the period set by INPUTB.

C-142 Programming

Operation Description


PULSE TRAIN

Creates a pulsed FALSE / TRUE output of programmable frequency.

INPUT A enables the pulse train when TRUE, disables when FALSE. INPUT B sets the length of the *on* part of the pulse in seconds (1 = 1 second). INPUT C sets the length of the *off* part of the pulse in seconds (1 = 1 second).

WINDOW

This function outputs TRUE when INPUT A is within a programmable range, and FALSE otherwise.

INPUT B sets the threshold of the window to be monitored. INPUT C defines the range of the window around the threshold. When the value of INPUT A is inside the window, the window expands by 0.01 to avoid flutter on output if noisy, i.e. if INPUT B = 5 and INPUT C = 4 then the range is 3 to 7, expanded to 2.5 to 7.5 when the value if INPUT A is inside the window.

If INPUT C is set to zero, the output will only be TRUE if INPUT A is exactly equal to INPUT B (this is fulfilled in the default condition when inputs A, B & C are all zero)

If INPUT C is set to a negative value, its absolute value defines the window range, and the output is inverted.

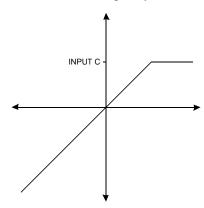
Operation	Description
UP/DOWN COUNTER	input A
	INPUT A provides a rising edge trigger to increment the output count by one. INPUT B provides a rising edge trigger to decrement the output count by one. INPUT C holds the output at zero. The output starts at zero. The output is limited at ±300.00.
(A*B)/C ROUND	The OUTPUT is set to (INPUT A * INPUT B) / (INPUT C). This is the same as (A*B)/C (enumerated value 3) except that the result is rounded.
WINDOW NO HYST	This is the same as WINDOW (enumerated value 19) except that there is no hysteresis when inside the 'window'. Thus, from the diagram given in WINDOW, if INPUT $B = 5$ and INPUT $C = 4$ then the range is 3 to 7.

C-144 Programming

Operation Description PROFILE SQRT **Profile** PROFILE X^1 Input 3 (Max) PROFILE X^2 Sqrt PROFILE X^3 PROFILE X^4 Output Input 2 (Min) 45 -5 95 Example: Profile Min = 10, Max = 110**Profile** 60 Input 3 (Max) 40 20 Sqrt Output -20 -40 Input 2 (Min) -60 Input A Example: Profile Min = 50, Max = -50Profile functions convert an input (0-1) to an output with (min) +((max-min) * fn(input)) where fn() is Sqrt (square root), Linear (X^1) , X^2 , X^3 or X^4 . The output is clamped between Min and Max. The input is clamped 0-100. The profiles are calculated from 100 point tables and linearly interpreted between the points. $y = \min + (\max - \min)x^{0.5}$ $y = \min + (\max - \min)x$ PROFILE SQRT PROFILE X^1 $y = \min + (\max - \min)x^3$ PROFILE X^2 $y = \min + (\max - \min)x^2$ PROFILE X^3 $y = \min + (\max - \min)x^4$ PROFILE X^4 where INPUT A: Input x INPUT B: Min INPUT C: Max

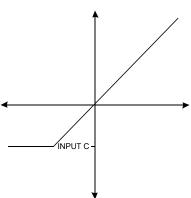
C-146 Programming

(Operation	escription
	ON ASD OFF A COL	INITA ' 4 A DIRITED A A QUITNIT' ON (0.01) OA ' 'CRIRITA' LA A DIRITECA


ON A>B, OFF A<C If INPUT A is greater than INPUT B then the OUTPUT is ON, (0.01). Otherwise if INPUT A is less than INPUT C then the OUTPUT is OFF, (0.00). If neither of these conditions is met then the OUTPUT is unchanged.

(A+B) CLAMPED C The OUTPUT is the result of INPUT A +, -, * or / INPUT B, clamped by INPUT C.

(A-B) CLAMPED C


(A*B) CLAMPED C

(A/B) CLAMPED C

Action of clamp for when INPUT C is greater than zero

If INPUT C is greater than 0 then the OUTPUT is clamped to INPUT C if it is greater than INPUT C.

Action of clamp when INPUT C is negative or zero

If INPUT C is negative or zero then the OUTPUT is clamped to INPUT C if it is less than INPUT C.

A>=B:A, A<=C:0

If INPUT A is greater than or equal to INPUT B then the OUTPUT is set to INPUT A. Otherwise if INPUT A is less than or equal to INPUT C then the OUTPUT is set to 0. If neither of these conditions is met then the OUTPUT is unchanged.

Operation	Description			
(A * B) + C	The OUTPUT is set to the result of (INPUT A * INPUT B) + INPUT C.			
A * (B + C)	The OUTPUT is set to the result of INPUT A * (INPUT B + INPUT C).			
A * (B - C)	The OUTPUT is set to the result of INPUT A * (INPUT B - INPUT C).			
A * (1+B/C)	The OUTPUT is set to the result of INPUT A * (1.0 + (INPUT B / INPUT C)). If INPUT C is zero then the result if (INPUT B/INPUT C) will be 32768.0 for positive values of INPUT B, and -32768.0 for negative values of INPUT B.			
A * (1+(B * C))	The OUTPUT is set to the result of INPUT A * (1.0 + (INPUT B * INPUT C)).			
MONOSTABLE HIGH	The OUTPUT is set HIGH, (0.01), on the rising edge of INPUT A. The OUTPUT remains high for a delay set by INPUT B, (in seconds). If a second rising edge reaches INPUT A while OUTPUT is high, the delay is restarted.			
	INPUT A			
	OUTPUT			
	The OUTPUT is inverted if INPUT C is not zero.			
MONOSTABLE LOW	The OUTPUT is set HIGH, (0.01), on the falling edge of INPUT A. The OUTPUT remains high for a delay set by INPUT B, (in seconds). If a second falling edge reaches INPUT A while OUTPUT is high, the delay is restarted. INPUT A			
	OUTPUT			
	The OUTPUT is inverted if INPUT C is not zero.			

C-148 Programming

Operation	Description
FILTER	The OUTPUT is the result of INPUT A passed through a first order low pass infinite impulse response filter with time constant set by INPUT B, (in seconds).
	If INPUT C is not zero then the OUTPUT is set to INPUT A.